Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KG.docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
49.07 Кб
Скачать

5.Архитектура видеоадаптеров. Svga-режимы.

В видеопамяти размещаются данные, отображаемые адаптером на экране монитора. Для видеоадаптеров EGA и VGA видеопамять, как правило, имеет объем 256 Кбайт. Видеоадаптеры SVGA оснащаются значительно большим объемом видеопамяти. В них может быть установлено больше 4 Мбайт памяти. Видеопамять находится в адресном пространстве процессора. Программы могут непосредственно производить с ней обмен данными.

Большинство видеоадаптеров SVGA содержат специальный графический сопроцессор, который может выполнять различные функции, например, он может использоваться для рисования различных геометрических фигур, масштабирования участков изображения и т. д.

Видеоадаптер SVGA обычно содержит значительно больше памяти и ее структура может быть сложнее, чем у адаптеров EGA и VGA. Однако при работе видеоадаптера в стандартных режимах можно считать что архитектура видеопамяти SVGA полностью соответствует VGA.

Организация видеопамяти адаптеров SVGA, для режимов с высоким разрешением и большим количеством одновременно отображаемых цветов значительно отличается от организации видеопамяти адаптеров EGA и VGA в стандартных режимах работы. Мы посвятили видеоадаптерам SVGA, в том числе организации видеопамяти, отдельную главу "Видеоадаптеры SVGA".

Если перепрограммировать некоторые регистры видеоадаптера, то можно увеличить число отображаемых строк для адаптера EGA до 43, а для VGA до 50. Если в компьютере установлен видеоадаптер SVGA, вам могут быть доступны другие текстовые режимы - 80x60, 132x25, 132x43, 132x50, 132x60 символов.

Видеоадаптеры SVGA имеют значительно больше регистров, чем простые видеоадаптеры VGA

Видеоадаптеры SVGA превосходят VGA по разрешению экрана и количеству одновременно отображаемых цветов.

Чтобы иметь возможность отображать большое количество цветов при большой разрешающей способности, видеоадаптер SVGA должен иметь значительно больше видеопамяти, чем адаптер VGA. Например, для реализации режима с разрешением 1024 x 768 пикселов и возможностью одновременного отображения 64 К цветов необходима видеопамять объемом 1,6 Мбайт.

Для доступа центрального процессора к видеопамяти обычно резервируется адресное пространство размером всего 64 Кбайт. Как же процессор получает доступ к видеопамяти, объем которой для некоторых режимов достигает 4 Мбайт? Существует несколько различных подходов к решению этой проблемы, которые могут комбинироваться.

Многие режимы видеоадаптера SVGA позволяют одновременно отображать на экране больше чем 256 различных цветов. Естественно что для этого каждый пиксел должен быть представлен большим количеством бит.

6)Алгоритмы растровой графики. Растровая развертка отрезков.

фото

7)Алгоритмы растровой графики. Растровая развертка окружностей. Вывод формул алгоритма Брезенхэма.

фото

8)Растровая развертка многоугольников.

фото

9)Реализация устройств ввода в OpenGL.

10)Геометрические преобразования. Двумерные преобразования в однородных координатах.

фото

11)Трехмерные геометрические преобразования в однородных координатах.

фото

12)Проецирование. Параллельные проекции. Ортографическая и аксонометрическая проекции.

Как уже отмечалось, проецирование в общем случае - отображение точек, заданных в системе координат размерностью N, в точки в системе с меньшей размерностью. При отображении трехмерных изображений на дисплей три измерения отображаются в два.

Проецирование выполняется с помощью прямолинейных проекторов (проецирующих лучей), идущих из центра проекции через каждую точку объекта до пересечения с картинной поверхностью (поверхностью проекции). Далее рассматриваются только плоские проекции, при которых поверхность проекции - плоскость в трехмерном пространстве.

По расположению центра проекции относительно плоскости проекции различаются центральная и параллельные проекции.

При параллельной проекции центр проекции находится на бесконечном расстоянии от плоскости проекции. Проекторы представляют собой пучок параллельных лучей. В этом случае необходимо задавать направление проецирования и расположение плоскости проекции. По взаимному расположению проекторов, плоскости проекции и главных осей координат различаются ортогональные, прямоугольные аксонометрические и косоугольные аксонометрические проекции.

При ортогональной проекции проекторы перпендикулярны плоскости проекции, а плоскость проекции перпендикулярна главной оси. Т.е. проекторы параллельны главной оси.

При аксонометрической проекции имеется одна из двух перпендикулярностей:

при прямоугольной аксонометрической проекции проекторы перпендикулярны плоскости проекции, которая расположена под углом к главной оси;

при косоугольной аксонометрической проекции проекторы не перпендикулярны плоскости проекции, но плоскость проекции перпендикулярна к главной оси.

Изображение, полученное при параллельном проецировании, не достаточно реалистично, но передаются точные форма и размеры, хотя и возможно различное укорачивание для различных осей.

При центральной проекции расстояние от центра проекции до плоскости проецирования конечно, поэтому проекторы представляют собой пучок лучей, исходящих из центра проекции. В этом случае надо задавать расположение и центра проекции и плоскости проекции. Изображения на плоскости проекции имеют т.н. перспективные искажения, когда размер видимого изображения зависит от взаимного расположения центра проекции, объекта и плоскости проекции. Из-за перспективных искажений изображения, полученные центральной проекцией, более реалистичны, но нельзя точно передать форму и размеры. Различаются одно, двух и трехточечные центральные проекции в зависимости от того по скольким осям выполняется перспективное искажение. Иллюстрация центральной проекции приведена на рис. .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]