Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
План лекций 2012.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
435.2 Кб
Скачать

Лекция 6.

Вводная: О предстоящих коллоквиумах. О дополнительных вопросах на проверку способностей.

Сечения тора – окончание

Построить тор-кольцо.

Спирические кривые – их плоскость пересекает ось тора. Построить. Вытянуть и показать.

Круги Вилларсо – сечение плоскостью, дважды касательной к поверхности тора. Названны в честь французского астронома и математика Ивона Вилларсо (1813-1883).

  1. Построить тор-кольцо;

  2. построить меридиональное сечение тора;

  3. построить касательную прямую к двум окружностям сечения тора – привязка Tangent (Касательная);

  4. установить ПСК в касательную плоскость: две точки по концам отрезка касательной, третья произвольно;

  5. получить сечение тора плоскость ZOX – получены круги Вилларсо;.

  6. вытянуть, взорвать, проверить командой List.

Задача. Сколько окружностей проходит на поверхности тора через произвольную предварительно-заданную точку? Ответ – 4 окружности. Две тривиальные и два круга Вилларсо. Предложить самостоятельно решить задачу на построение четырех окружностей, проходящих через произвольную точку на поверхности тора. Конкурс на “умника или умницу”.

Позиционные задачи

Позиционными называют задачи на построение точек и линий пересечения.

Пересечение прямой с с поверхностью. Это так называемая 1-ая позиционная задача.

Схема решения 1-ой позиционной задачи.

Для нахождения точек пересечения прямой линии с поверхностью, нужно:

  1. задать плоскость, проходящую через прямую, третья точка – произвольно;

  2. построить сечение поверхности этой плоскостью;

  3. найти искомые точки на пересечении прямой с линией сечения.

Примеры построения точек пересечения поверхности с прямой линией

Задача 4.4, а – построить правильную пирамиду и прямую, пересечь.

Задача 4.4, б пересечение прямой с конусом (файл 4_5-б_, лекция 9).

Задача на пересечение прямой с тором построить и решить

Порядок поверхности

В аналитической геометрии – это максимальный показатель степени в уравнении поверхности. Геометрический смысл порядка поверхности: максимально – возможное количество точек пересечения поверхности с прямой линией. Пример с конусом, сферой, цилиндром – две точки пересечения. Это поверхности второго порядка. Тор пересекатся с прямой максимально в 4-х точках – это поверхность 4-ого порядка.

Построение точки, принадлежащей поверхности

Точка принадлежит поверхности, если она принадлежит какой-либо линии этой поверхности.

Пример. Точка на конусе. Построить образующую, построить точку на образующей.

Построение точки, принадлежащей заданной поверхности, если известна одна проекция этой точки:

  1. Построить проецирующую прямую, проходящую через заданную проекцию точки;

  2. построить сечение поверхности плоскостью, проходящей через проецирующую прямую;

  3. найти точку на пересечении прямой с полученным сечением;

Пример для конуса или сферы.

Построение и исследование линии пересечения поверхностей

Это так называемая 2-я позиционная задача.

Последовательность решения:

  1. построить 3d-модели заданных тел, находящихся во взаимном пересечении.

  2. объединить или вычесть тела: команды Union (Объединить) или Subtract (Вычесть);

  3. извлечь линии пересечения с поверхности тел: команда Solidedit (Редтел), опция Copyedges (Копировать ребра));

  4. выполнить 3d-исследование полученных линий и тел в пересечении;

  5. выполнить автоматизированное построение чертежа, то есть проекций тел с учетом видимости линий (команды Solprof, Flatshot).

Примеры построения линий пересечения:

Пример 1. Задача 4.2, г – призматический вырез в конусе. Вырез задается как тело, подлежащее вычитанию. Проанализировать линии пересечения. Построить чертеж.

При построении чертежа показать автоматическое задание проекционной связи (Mvsetup).

Пример 2. Задача 4.5, а ­– пересечение многогранников. Файл 4_6-a.dwg (Лекция 9).

Пример 3. Задача 4.8, а – пересечение конуса и сферы. Файл 4_7-в.dwg (Лекция 9).

Дополнительно, если успеваем:

Пример 4. Задача 4.7, в – пересечение призмы и тора. Файл 4_7-в.dwg (Лекция 9).

Пример 5. Задача 4.2, б ­­– призматическое отверстие в сфере. Решить поэтапно.