
- •Введение
- •Тема 1. Неоднородность геологических тел
- •Тема 2. Пористость, глинистость, карбонатность
- •2.2. Глинистость порового пространства
- •2.3. Эффективная и динамическая пористость
- •2.4. Карбонатность пород
- •Тема 3. Влагоемкость. Двойной электрический слой
- •3.1. Влагоемкость. Виды воды в горных породах
- •Влагоемкость
- •Виды влагоемкости
- •Подвешенная влагоемкость. Подвешенная влагоемкость - свойство пород удерживать различный объем связанной или капиллярно-подвешенной. Воды на определенный объем сухой породы.
- •Виды воды в горных породах
- •3.2. Двойной электрический слой
- •3.3. Структурные особенности жидкой воды
- •Тема 4. Нефте и газонасыщенность пород
- •Тема 5. Проницаемость
- •5.1. Абсолютная проницаемость
- •Влияние структурных характеристик породы на коэффициент абсолютной проницаемости
- •Зависимость коэффициента абсолютной проницаемости от петрофизических характеристик
- •Проницаемость трещиноватых пород
- •Классификация пород по коэффициенту проницаемости
- •Эффективная и относительная проницаемости
- •Тема 6. Плотность
- •6.1. Плотность газов, жидкостей и минералов
- •Плотность пород
- •6.2. Плотность осадочных пород
- •7. Электромагнитные свойства горных пород
- •Поляризация горных пород Вызванная поляризация
- •Суммарная поляризация и диэлектрическая проницаемость
- •Естественная поляризация
- •7.2. Особые электрические явления в породах и минералах
- •Диэлектрические потери
- •7.3. Электропроводность
- •Зависимость электропроводности пород от внутренних факторов
- •7.4. Магнитные свойства
- •8. Теплофизические свойства горных пород
- •8.1. Законы распространения тепла в горных породах
- •8.2. Тепловой поток
- •Плотность конвективного теплового потока пропорциональна скорости фильтрации жидкости - w, теплоемкости – с, плотности -s, температуре – т.
- •9. Радиоактивность
- •9.1. Строение атома
- •Характеристика элементарных частиц
- •9.2. Радиоактивность
- •9.3. Энергия частиц
- •Энергетическая характеристика излученных частиц
- •9.4. Взаимодействие излучений с веществом
- •9.5. Распределение радиоактивных элементов в земной коре
- •Влияние глинистости на экранирующие свойства
- •10.3. Влияние термодинамических условий
- •10.4. Влияние внешнего давления
- •11. Подземное движение жидкостей и газов
- •11.1. Основной закон фильтрации
- •11.2. Движение жидкости в неоднородных и трещиноватых пластах
- •11.3. Вытеснение нефти водой из пористой среды
- •Нефтенасыщенной пористой среды
- •11.4. Вытеснение нефти из трещиновато-пористого пласта
- •11.5. Фильтрация газированной жидкости
- •11.6. Влияние силы тяжести на подземное движение нефти и газа
- •11.7. Конвективная диффузия. Сорбция
- •11.8. Фильтрация неньютоновских жидкостей
- •Расположения скважин
- •Тема 12. Деформация горных пород
- •12.1. Напряженное состояние горных пород
- •12.2. Взаимодействие горных пород и насыщающих их жидкостей
- •Ствола обсаженной скважины:
- •Литература
- •Содержание
- •Тема 12.Деформация горных пород……………………………………………….…….81
8. Теплофизические свойства горных пород
8.1. Законы распространения тепла в горных породах
Распределение температур па поверхности Земли и в ее недрах, естественное тепловое поле Земли, определяется:
пространственным распределением и мощностью источников тепла (солнце, атмосферные осадки, радиоактивные элементы, химические реакции, кристаллизация и другие процессы);
способностью пород к передаче тепловой энергии;
пространственным распределением пород с различной теплопроводностью. Различают такие виды теплопередачи, как теплопроводность, конвективный и лучистый (радиационный) теплообмен.
Внутренняя тепловая энергия у диэлектриков возникает в результате тепловых колебаний их кристаллических решеток, а у проводников и полупроводников, кроме того, и вследствие теплового движения электронов. В узлах решеток диэлектриков размещаются взаимодействующие атомы, молекулы или ионы, находящиеся в тепловом движении, а так как колебания частиц кристаллической структуры не изолированы, в веществе распространяются волны тепловых колебаний. Передачу энергии связанных колебаний узлов решетки представляют себе как распространение в веществе гармонических упругих звуковых волн различной частоты.
Таким образом, перенос тепла в диэлектриках рассматривается как передача волнами кинетической энергии.
У проводников и полупроводников перенос тепловой энергии осуществляется в основном диффузией свободных электронов — передачей тепловой энергии электронами проводимости, решеточная теплопроводность проводников значительно меньше электронной.
В стационарном поле количество тепла, перенесенное через плоский слой, пропорционально градиенту температуры, площади поверхности слоя и времени: q = λ gradT τ, где λ–коэффициент теплопроводности, зависящий от особенностей тепловых свойств материала слоя, Дж / (с.м-1) или Вт / (м.0К); q —плотность теплового потока, Дж/м2, –количество тепла, протекающего в единицу времени, через единицу площади поверхности, м2.
Геотемпературное поле. Интенсивность теплового движения атомов вещества определяет температуру. Для определения геотемпературного поля земной среды необходимо знать температуру на единый момент времени в каждой точке исследуемого пространства. Это условие должно соблюдаться при изучении гелиотермозоны и может практически игнорироваться при исследованиях в области геотермозоны, где геотемпературное поле стационарно. Поле температур отображают в изотермах – линиях одинаковой температуры.
Геотермический градиент. Степень изменения температуры на единицу расстояния между точками среды носит название геотермического градиента. Величина обратная геотермическому градиенту называется геотермической ступенью. В применении к исследованию горизонтов Земли геотермический градиент и ступень измеряется по глубине. Иногда такие измерения производят по горизонтальной плоскости или по плоскости кровли или подошвы горизонта. В этом случае направление определения градиента специально отмечают.
Градиент температуры определяется следующей формулой:
Grad T=(Т2 – T1)/(h2 – h1)=DT/Dh
Геотермический градиент измеряется в градусах Цельсия на единицу длины, °С/м, °С/100м.
Градиент температур в областях платформ, в верхних горизонтах составляет 1¸1,5°С/100м. В зонах активных геологических процессов, разломов, рифтов, молодых горных систем, вулканических областей он имеет более высокие значения 1,5-3°С/100м и более.
Теплопроводность. Теплопроводность среды характеризует ее способность передавать тепловую энергию. Коэффициент теплопроводности l характеризует количество тепла, проходящего в единицу времени через единицу площади при градиенте температуры 1°С на единицу длины.
l = Q/gradT , l = a×c×s, Вт/(м°С),
где a -температуропроводность, c -теплоемкость, s- плотность
Температуропроводность - способность передавать температуру с большей или меньшей ее потерей на единицу длины. Единица измерения температуропроводности – м 2 /сек: a = l/(сs).
Обратимся к простейшим примерам для понятия смысла параметров теплопроводности и температуропроводности. Возьмем железный стержень. При нагревании одного конца очень быстро ощущаем высокую температуру на другом, нагретый металл быстро остывает. Это свидетельствует о высокой температуропроводности (15-18 м 2/сек) и теплопроводности (8-10 Вт/(м °С) и малой теплоемкости.
Вода, нефть обладают малой теплопроводностью и температуропроводностью, но зато большой теплоемкостью. Теплоемкость воды в 5 раз выше теплоемкости твердых пород и в 2 раза выше теплоемкости нефти.
Теплоемкость - способность единицы объема вещества поглощать или отдавать тепловую энергию. Коэффициент теплоемкости численно равен величине тепловой энергии, которую надо сообщить единице объема вещества, чтобы поднять его температуру на 1°С. Измеряется удельная теплоемкость в Дж/(кг°С).
Теплофизические параметры горных пород зависят от составляющих их минералов, структурно-текстурных особенностей пород, плотности, пористости, давления, температуры, влагонасыщенности. Одна и та же порода может иметь разные величины теплофизических параметров, в зависимости от места и направления измерения, что обусловлено неоднородностью породы и ее анизотропией.
В породах земной коры передача тепла происходит молекулярной (кондуктивной) теплопроводностыо, конвекцией и лучеиспусканием. Молекулярная теплопроводность определяется электронами проводимости и колебаниями атомов кристаллической решетки. С ростом температуры (соответственно глубины) величина кондуктивной теплопроводности уменьшается и увеличивается теплопроводность электромагнитным лучеиспусканием. Минимум суммарной теплопроводности горных пород приурочен к слою Мохоровичича, что обуславливает накопление в нем тепловой энергии. Земная кора является своеобразным "одеялом'' для Земли.
Конвективная теплопроводность обусловлена фильтрацией флюидов, как теплоносителя, поэтому зависит от объема пористого пространства, скорости фильтрации жидкости, ее теплоемкости и вязкости. При малой скорости движения жидкости поперечная и продольная теплопроводности равны. Конвективная теплопроводность значительна в мантии и внешнем ядре Земли. Доказано наличие глобальных мантийных конвекционных потоков, как двигателя тектонических процессов перемещения плит.
Величины теплофизических параметров основных видов пород приводятся в таблице, из которой видно, что отдельные породы имеют резко отличные теплофизические параметры. Высокой теплопроводностью и температуропроводностью обладают каменные соли, а низкой теплопроводностью - вода, нефть и воздух. В то же время вода и нефть обладают высокой теплоемкостью, поэтому их роль в конвективном теплопереносе очень большая.
Высокой теплопроводностью отмечаются все гидрохимические осадки и породы, обладающие электронной составлявшей теплопроводности: графит, железные и полиметаллические руды. С увеличением влажности породы от 0 до 40% теплопроводность пород увеличивается в 6 - 7 раз.
С увеличением температуры теплопроводность пород уменьшается. Так, в пределах до 500°С в осадочных породах, гранитах и базальтах теплопроводность уменьшается на 20%, а ультраосновных пород – в 2-2,5 раза.
Таблица теплофизических параметров пород
Породы |
l,Вт/м °С |
с, кДж/кг °С |
а,10-6м2/сек |
Гранит |
2,5-4,1 |
0,67-0,96 |
0,61-0,76 |
Базальт |
2,1-2,8 |
0,84-1,1 |
0,66-1,2 |
Мрамор |
2,0-3,5 |
0,8-1 |
0,86-5,3 |
Глина |
0,6-2,7 |
0,79-0,92 |
- |
Доломит |
до 4,6 |
- |
до 2,2 |
Известняк |
0,81-4,1 |
0,77-1,0 |
0,5-2,0 |
Каменная соль |
7,2 |
0,84 |
4,1 |
Песок |
0,35-3,5 |
0,71-0,84 |
- |
Песчаник |
0,7-5,8 |
0,79-1,0 |
0,44-2,4 |
Вода |
0,58 |
4,18 |
1,4 |
Лед |
2-2,4 |
2,09 |
|
Нефть |
0,140 |
2,09 |
0,69-0,86 |
Воздух |
0,026 |
1,01 |
19,7 |