
- •Введение
- •Тема 1. Неоднородность геологических тел
- •Тема 2. Пористость, глинистость, карбонатность
- •2.2. Глинистость порового пространства
- •2.3. Эффективная и динамическая пористость
- •2.4. Карбонатность пород
- •Тема 3. Влагоемкость. Двойной электрический слой
- •3.1. Влагоемкость. Виды воды в горных породах
- •Влагоемкость
- •Виды влагоемкости
- •Подвешенная влагоемкость. Подвешенная влагоемкость - свойство пород удерживать различный объем связанной или капиллярно-подвешенной. Воды на определенный объем сухой породы.
- •Виды воды в горных породах
- •3.2. Двойной электрический слой
- •3.3. Структурные особенности жидкой воды
- •Тема 4. Нефте и газонасыщенность пород
- •Тема 5. Проницаемость
- •5.1. Абсолютная проницаемость
- •Влияние структурных характеристик породы на коэффициент абсолютной проницаемости
- •Зависимость коэффициента абсолютной проницаемости от петрофизических характеристик
- •Проницаемость трещиноватых пород
- •Классификация пород по коэффициенту проницаемости
- •Эффективная и относительная проницаемости
- •Тема 6. Плотность
- •6.1. Плотность газов, жидкостей и минералов
- •Плотность пород
- •6.2. Плотность осадочных пород
- •7. Электромагнитные свойства горных пород
- •Поляризация горных пород Вызванная поляризация
- •Суммарная поляризация и диэлектрическая проницаемость
- •Естественная поляризация
- •7.2. Особые электрические явления в породах и минералах
- •Диэлектрические потери
- •7.3. Электропроводность
- •Зависимость электропроводности пород от внутренних факторов
- •7.4. Магнитные свойства
- •8. Теплофизические свойства горных пород
- •8.1. Законы распространения тепла в горных породах
- •8.2. Тепловой поток
- •Плотность конвективного теплового потока пропорциональна скорости фильтрации жидкости - w, теплоемкости – с, плотности -s, температуре – т.
- •9. Радиоактивность
- •9.1. Строение атома
- •Характеристика элементарных частиц
- •9.2. Радиоактивность
- •9.3. Энергия частиц
- •Энергетическая характеристика излученных частиц
- •9.4. Взаимодействие излучений с веществом
- •9.5. Распределение радиоактивных элементов в земной коре
- •Влияние глинистости на экранирующие свойства
- •10.3. Влияние термодинамических условий
- •10.4. Влияние внешнего давления
- •11. Подземное движение жидкостей и газов
- •11.1. Основной закон фильтрации
- •11.2. Движение жидкости в неоднородных и трещиноватых пластах
- •11.3. Вытеснение нефти водой из пористой среды
- •Нефтенасыщенной пористой среды
- •11.4. Вытеснение нефти из трещиновато-пористого пласта
- •11.5. Фильтрация газированной жидкости
- •11.6. Влияние силы тяжести на подземное движение нефти и газа
- •11.7. Конвективная диффузия. Сорбция
- •11.8. Фильтрация неньютоновских жидкостей
- •Расположения скважин
- •Тема 12. Деформация горных пород
- •12.1. Напряженное состояние горных пород
- •12.2. Взаимодействие горных пород и насыщающих их жидкостей
- •Ствола обсаженной скважины:
- •Литература
- •Содержание
- •Тема 12.Деформация горных пород……………………………………………….…….81
Тема 6. Плотность
Плотность — свойство пород иметь определенную массу единицы объема, отличную от удельной массы их других разностей.
бп= т п / Vп .
где бп – плотность; т п - масса породы; Vп – ее объем.
В общем случае случае масса породы состоит соответственно из массы твердой, жидкой и газовой фаз при малоглинистой породе. Плотность породы равна сумме плотности сухой породы бс и произведению коэффициента влагоемкости w на плотность жидкости бж :
бп = бс + w бж
Единицей измерения плотностей является кг/м3, г/см3.
Значения плотности пород определяются по образцам из обнажений и скважин. Плотность пород оценивается по плотности ее фаз, значениям коэффициентов пористости и влагоемкости.
Для глинистых пород и глин уравнение неверно из-за усадки -уменьшения их порового объема при высушивании. Плотность глинистых пород оценивается по содержанию в породе глинистых фракций и экспериментальной зависимости для данного района.
Плотности флюидонасыщенных пород определяется с учетом плотностей этих фаз, коэффициентов их пористости и влажности.
6.1. Плотность газов, жидкостей и минералов
Газовая фаза. Плотность воздуха при температуре 20 °С и давлении 0,1 МПа равна 0,0012 г/см3, плотность углеводородных газов находится в пределах от 0,000715 (метан) до 0,00317 (пентан) г/см3.
Жидкая фаза. Природная поровая вода, плотность которой при температуре 20 °С в зависимости от минерализации изменяется от 1,01 г/см3 (пресная) до 1,24 г/см3 (предельно крепкий рассол), и смеси этой воды с нефтью, представляют собой жидкую фазу. Если последняя состоит из смесей нефти с водой, ее плотность определяется плотностями входящих в ее состав нефти и воды.
Плотность нефтей изменяется в зависимости от их химического состава от 0,72 до 1 г/см3 и редко бывает больше.
Минералы. Плотность твердой фазы пород определяет их минеральный состав. Коэффициент пористости этих сред мал (менее 1%), их плотность бт примерно равна плотности бм всего минерала.
Плотность минералов тем выше, чем больше они содержат атомов значительной относительной атомной массы, и чем плотнее атомы упакованы в единице объема. Упаковку определяют атомные (ионные) радиусы, валентности и тип связи частиц.
Влияние радиуса частиц легко показать, сравнивая плотность ионных кристаллов сильвина и галита. Хотя в состав сильвина входит атом калия с большей относительной массой, чем атом натрия, находящийся в молекуле галита, плотность сильвина (1,99 г/см3) меньше плотности галита (2,1-2,2 г/см3) за счет различия в ионных радиусах К и Nа, равных соответственно 0,0133 и 0,098 нм.
Зависимость плотности от валентности ионов в составе минералов, объясняется так. Крупные ионы (например, О2-, S2-, Сl-) многих минералов образуют плотнейшие упаковки. Катионы меньшего радиуса располагаются между ними. Катионов между анионами может быть тем больше, а, следовательно, плотность минерала тем значительнее, чем меньше их валентность и выше валентность анионов.
Зависимость плотности от структуры минерала и плотности упаковки его атомов или молекул может быть показана на примере одинаковых по химическому составу, но различных по структуре минералов. Хотя графит и алмаз имеют идентичные химические составы, структура их резко различна. Графит характеризуется слоистой структурой при расстоянии между слоями 0,34 нм и расстоянии между атомами в слое 0,142 нм, а алмаз — более плотной структурой с расстоянием между атомами 0,154 нм, это сказывается на плотностях этих минералов, равных соответственно 2,2 и 3,5 г/см3. Плотность, для большинства минералов, изменяется от 0,98 для льда до 22,5 г/см3 для иридистого осмия. Минералы классифицируются на плотные (6т>4), средней (бт= 2,5-4,0) и малой (бт<2,5 г/см3) плотности.
Большая часть всех минералов имеет среднюю плотность. Незначительное число минералов (10-15%) малой плотности.
К плотным минералам относятся: селен, теллур, самородные металлы, сульфиды, более половины окислов и гидроокислов, редкие из силикатов (торит, циркон и др.), редкие из фосфатов (монацит, карнотит и др.), некоторые из карбонатов (церуссит, витерит и др.), вольфраматы (шеелит, вольфрамит и др.), некоторые из сульфатов (барит, англезит и др.), хлоридов и бромидов: бромирит, каломель и др. В составе плотных минералов значительна концентрация частиц с большой относительной атомной массой (свинец, ртуть, серебро, медь), они также характеризуются относительно малым атомным (ионным) радиусом; у этих минералов обнаруживается и плотнейшая укладка атомов – кубическая и гексагональная.
К минералам малой плотности принадлежат – графит и сера; некоторые из окислов и гидроокислов (лед, опал); многие минералы класса силикатов (монтмориллонит); водные карбонаты (сода); водные сульфаты, галит, сильвин. Минералы малой плотности содержат элементы с малой относительной атомной массой (водород, углерод, кислород, натрий, кремний, сера, хлор, калий и др.); многие из них (лед, графит, кальцит и др.) характеризуются рыхлой структурой.
Плотность породообразующих минералов осадочных горных пород изменяется от 1,85 (для аллофана) до 5,18 г/см3 (для пирита), причем большинство из них является минералами средней плотности. Плотность рудных минералов достигает больших значений, изменяясь от 2,3 (гидраргиллит) до 7,5 г/см3 (галенит). Плотность породообразующих минералов магматических пород достигает 4 г/см3 и более.