Скачиваний:
55
Добавлен:
10.05.2014
Размер:
40.29 Кб
Скачать

2. Ряды

1. Понятие числового ряда. Сходящийся ряд, его сумма.

  1. Критерий Коши сходимости числового ряда. Необходимое условие сходимости ряда.

  2. Основные свойства сходящихся рядов. Ряды с неотрицательными членами. Признаки сравнения.

  3. Признаки Даламбера и Коши, их предельные формы.

  4. Интегральный признак Коши-Маклорена.

  5. Ряд Лейбница. Абсолютно и условно сходящиеся ряды.

  6. Поведение положительной и отрицательной составляющих ряда в случае абсолютной и условной сходимости.

  7. Переместительное свойство абсолютно сходящихся рядов. Теорема Римана.

  8. Почленное умножение абсолютно сходящихся рядов.

  1. Последовательности и ряды функций. Область сходимости. Равномерная сходимость.

  2. Критерий Коши равномерной сходимости последовательности и ряда (без док-ва).

  1. Достаточный признак равномерной сходимости ряда (Признак Вейерштрасса).

  2. Непрерывность предела равномерно сходящейся последовательности непрерывных функций и суммы равномерно сходящегося ряда непрерывных функций. Почленный переход к пределу в функциональных рядах.

  1. Условия предельного перехода под знаком производной и почленного дифференцирования ряда.

  2. Понятие степенного ряда. Радиус и интервал сходимости степенного ряда (формула Коши- Адамара).

  3. Первая теорема Абеля. Вторая теорема Абеля (формулировка).

  4. Равномерная сходимость и непрерывность суммы степенного ряда.

  5. Почленное интегрирование и дифференцирование степенных рядов.

  6. Разложение функции в степенной ряд Тейлора. Единственность разложения.

20. Разложение элементарных функций в ряд Тейлора.

21. Собственные интегралы, зависящие от параметра, их непрерывность, интегрируемость и дифференцируемость по параметру.

  1. Несобственные интегралы, зависящие от параметра. Равномерная сходимость интеграла относительно параметра.

  2. Непрерывность несобственного интеграла по параметру, условия интегрируемости и дифференцируемости по параметру.

  1. Применение теории интегралов, зависящих от параметра.

  2. Периодические функции. Четные и нечетные функции. Ортогональная система функций.

  3. Ортогональность тригонометрической системы функций.

  4. Тригонометрический ряд. Коэффициенты Фурье. Разложимость функции в ряд Фурье (без доказательства).

  5. Примеры разложений в ряд Фурье. Разложение на отрезке [0,1 ].

  6. Ряд Фурье по произвольной ортогональной системе функций. Задача о наименьшем квадратичном отклонении. Неравенство Бесселя.

  7. Полнота ортогональной системы функций. Равенство Парсеваля.

  8. Условие равномерной сходимости ряда Фурье (без доказательства).

  9. Понятие об интеграле Фурье.

Соседние файлы в папке Дифференциальные уравнения и ряды - Тищенко