
- •1.Основные понятия дифференциальных уравнений: виды, решения, интегралы уравнений. Постановка задачи Коши.
- •2.Уравнения с разделяющимися переменными
- •3. Однородные и приводящиеся к ним уравнения.
- •4. Линейные и приводящиеся к ним уравнения.
- •6.Теорема существования и единственности решения задачи Коши: .
- •Для любой точки найдется решение уравнения (1), которое удовлетворяет условию (2)
- •Если два решения уравнения (1) совпадают хотя бы в одной точке , то решение и будут тождественно равны для всех значений переменной , для которых они определены.
- •7)Теорема существования и единственности решения для уравнения .
- •9.Уравнения Лагранжа и Клеро.
- •11.Дифференциальные уравнения го порядка. Понятие решения. Понятие общего решения и общего интеграла.
- •13)Уравнения высших порядков, допускающих понижение порядка.
- •14)Общие свойства решений линейного дифференциального уравнения. Теорема существования и единственности решения задачи Коши.
- •15)Линейные однородные дифференциальные уравнения. Свойства решений. Линейная зависимость и независимость решений. Определитель Вронского. Критерий независимости решений.
- •16)Фундаментальная система решений. Структура общего решения линейного однородного уравнения.
- •17)Формула Остроградского – Лиувилля.
- •18)Линейное неоднородное уравнение. Структура общего решения. Метод вариации постоянных.
- •19)Линейное однородное уравнение с постоянными коэффициентами. Построение фундаментальной системы решений.
- •20)Интегрирование линейного неоднородного уравнения с постоянными коэффициентами, когда неоднородность квазимногочлен.
- •21)Линейная краевая задача. Функция Грина.
- •22)Приведение линейных дифференциальных уравнений к простейшему виду.
- •24.Понятие нормальной системы. Теорема существования и единственности решения задачи Коши для нормальной системы. Схема доказательства.
- •33.Структура общего решения линейной неоднородной системы. Метод вариации постоянных.
- •§ 6. Метод вариации произвольных постоянных.
- •43) Интегрирование линейного однородного уравнения в частных производных первого порядка.
- •44) Решение задачи Коши для линейного однородного уравнения в частных производных.
16)Фундаментальная система решений. Структура общего решения линейного однородного уравнения.
Рассмотрим линейное однородное дифференциальное уравнение
y(n) + an-1(x)y(n - 1) + ... + a1(x)y' + a0(x)y = 0.
Фундаментальной системой решений однородного линейного дифференциального уравнения называется упорядоченный набор из n линейно независимых решений уравнения.
Иными словами любые n линейно независимых решений y1(x), y2(x),..., yn(x) уравнения y(n) + an-1(x)y(n - 1) + ... + a1(x)y' + a0(x)y = 0 образуют фундаментальную систему решений.
Доказано, что у однородного линейного дифференциального уравнения с непрерывными коэффициентами существует фундаментальная система решений.
Пусть задана некоторая линейно независимая система n векторов из Rn:
И пусть функции y1(x), y2(x),..., yn(x) — решения линейного однородного уравнения с начальными условиями:
Функции y1(x), y2(x),..., yn(x) образуют фундаментальную систему решений линейного однородного уравнения.
Структура общего решения линейного однородного уравнения.
Рассмотрим на [a; b] линейное однородное дифференциальное уравнение
y(n) + an-1(x)y(n - 1) + ... + a1(x)y' + a0(x)y = 0.
Общим решением этого уравнения на отрезке [a;b] называется функция y = Φ(x, C1,..., Cn ), зависящая от n произвольных постоянных C1,..., Cn и удовлетворяющая следующим условиям :
− при любых допустимых значениях постоянных C1,..., Cn функция y = Φ(x, C1,..., Cn ) является решением уравнения на [a; b] ;
− какова бы ни была начальная точка (x0, y0, y1,0 ,..., yn − 1,0 ) , x0∈ [a;b] , существуют такие значения C1 =C10 , ..., Cn = Cn0 , что функция y = Φ(x,C10 , ..., Cn0) удовлетворяет начальным условиям y(x0) = y0, y '(x0) = y1,0 ,..., y(n − 1) (x0) = yn− 1,0 .
Справедливо следующее утверждение ( теорема о структуре общего решения линейного однородного уравнения).
Если все коэффициенты уравнения линейного однородного дифференциального уравнениния непрерывны на отрезке [a;b] , а функции y1(x),y2(x),..., yn(x) образуют фундаментальную систему решений этого уравнения, то общее решение уравнения имеет вид
y(x,C1,..., Cn) = C1 y1(x) + C2 y2(x) + ... + Cn yn(x),
где C1,...,Cn — произвольные постоянные.
17)Формула Остроградского – Лиувилля.
18)Линейное неоднородное уравнение. Структура общего решения. Метод вариации постоянных.
Рассмотрим линейное неоднородное дифференциальное уравнение
y(n) + an-1(x)y(n - 1) + ... + a1(x)y' + a0(x)y = f(x).
Общим решением этого уравнения на отрезке [a;b] называется функция y = Φ(x, C1,..., Cn ), зависящая от n произвольных постоянных C1,..., Cn и удовлетворяющая следующим условиям :
− при любых допустимых значениях постоянных C1,..., Cn функция y = Φ(x, C1,..., Cn ) является решением уравнения на [a; b] ;
− какова бы ни была начальная точка (x0, y0, y1,0 ,..., yn − 1,0 ) , x0∈ [a;b] , существуют такие значения C1 =C10 , ..., Cn = Cn0 , что функция y = Φ(x,C10 , ..., Cn0) удовлетворяет начальным условиям y(x0) = y0, y '(x0) = y1,0 ,..., y(n − 1) (x0) = yn− 1,0 .
Справедливо следующее утверждение ( теорема о структуре общего решения линейного неоднородного уравнения).
Если все коэффициенты уравнения линейного однородного дифференциального уравнениния непрерывны на отрезке [a;b] , а функции y1(x),y2(x),..., yn(x) образуют фундаментальную систему решений соответствующего однородного уравнения, то общее решение неоднородного уравнения имеет вид
y(x,C1,..., Cn) = C1 y1(x) + C2 y2(x) + ... + Cn yn(x) + y*(x),
где C1,...,Cn — произвольные постоянные, y*(x) — частное решение неоднородного уравнения.