
- •1.Основные понятия дифференциальных уравнений: виды, решения, интегралы уравнений. Постановка задачи Коши.
- •2.Уравнения с разделяющимися переменными
- •3. Однородные и приводящиеся к ним уравнения.
- •4. Линейные и приводящиеся к ним уравнения.
- •6.Теорема существования и единственности решения задачи Коши: .
- •Для любой точки найдется решение уравнения (1), которое удовлетворяет условию (2)
- •Если два решения уравнения (1) совпадают хотя бы в одной точке , то решение и будут тождественно равны для всех значений переменной , для которых они определены.
- •7)Теорема существования и единственности решения для уравнения .
- •9.Уравнения Лагранжа и Клеро.
- •11.Дифференциальные уравнения го порядка. Понятие решения. Понятие общего решения и общего интеграла.
- •13)Уравнения высших порядков, допускающих понижение порядка.
- •14)Общие свойства решений линейного дифференциального уравнения. Теорема существования и единственности решения задачи Коши.
- •15)Линейные однородные дифференциальные уравнения. Свойства решений. Линейная зависимость и независимость решений. Определитель Вронского. Критерий независимости решений.
- •16)Фундаментальная система решений. Структура общего решения линейного однородного уравнения.
- •17)Формула Остроградского – Лиувилля.
- •18)Линейное неоднородное уравнение. Структура общего решения. Метод вариации постоянных.
- •19)Линейное однородное уравнение с постоянными коэффициентами. Построение фундаментальной системы решений.
- •20)Интегрирование линейного неоднородного уравнения с постоянными коэффициентами, когда неоднородность квазимногочлен.
- •21)Линейная краевая задача. Функция Грина.
- •22)Приведение линейных дифференциальных уравнений к простейшему виду.
- •24.Понятие нормальной системы. Теорема существования и единственности решения задачи Коши для нормальной системы. Схема доказательства.
- •33.Структура общего решения линейной неоднородной системы. Метод вариации постоянных.
- •§ 6. Метод вариации произвольных постоянных.
- •43) Интегрирование линейного однородного уравнения в частных производных первого порядка.
- •44) Решение задачи Коши для линейного однородного уравнения в частных производных.
1.Основные понятия дифференциальных уравнений: виды, решения, интегралы уравнений. Постановка задачи Коши.
Дифференциальное уравнение - это уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значения её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию, ее производные и независимые переменные.
Все дифференциальные уравнения можно разделить на обыкновенные дифференциальные уравнения(ОДУ), в которые входят только функции и их производные от одного аргумента, и уравнения с частными производными (УРЧП), в которых входящие функции зависят от многих переменных. Порядком или степенью дифференциального уравнения называется наибольший порядок производных, входящих в дифференциальное уравнение.
Рассмотрим примеры: 1) y′−y=0 – дифференциальное уравнение 1 – го порядка; 2) y′′+y′+y=x – дифференциальное уравнение 2 – го порядка; 3) y′′′+y′′+y′+y+x=0 – дифференциальное уравнение 3 – го порядка; Во всех этих дифференциальное уравнение y=y(x) – неизвестная функция.
Обыкновенным дифференциальным уравнением n –го порядка называется уравнение вида
F (x, y(x), y '(x), y ''(x), … , y(n)(x)) = 0,
где F — известная функция (n + 2)-х переменных, x — независимая переменная из интервала (a,b), y(x) — неизвестная функция. Число nназывается порядком уравнения.
Функция y(x) называется решением (или интегралом) дифференциального уравнения на промежутке (a, b), если она n раз дифференцируема на (a, b) и при подстановке в уравнение обращает его в тождество.
Обыкновенные дифференциальные уравнения, разрешенные относительно старшей производной, называют уравнениями в нормальной форме:
y(n) = f(x, y, y ', y '', … , y(n − 1)).
Дифференциальное уравнение обычно имеет бесконечно много решений. Чтобы выделить нужное решение, используют дополнительные условия.
Чтобы выделить единственное решение уравнения n–го порядка обычно задают n начальных условий y(x0) = y0, y '(x0) = y1, y ''(x0) = y2, … , y(n − 1)(x0) = yn − 1.
|
Задачей Коши (или начальной задачей) называется задача отыскания решения y = y(x) уравнения
F(x, y(x), y '(x), y ''(x), … , y(n )(x)) = 0, x>x0,
удовлетворяющего условиям
y(x0) = y0, y '(x0) = y1, y ''(x0) = y2, … , y(n − 1)(x0) = yn − 1.
|
Условия y(x0) = y0, y '(x0) = y1, y ''(x0) = y2, … , y(n − 1)(x0) = yn − 1 называются начальными данными, начальными условиями или данными Коши.
Любое конкретное решение y = φ(x) уравнения n –го порядка F(x, y(x), y '(x), y ''(x), … , y(n )(x)) = 0, называется частным решением.
Общим решением дифференциального уравнения
F(x, y(x), y '(x), y ''(x), … , y(n )(x)) = 0
называется функция
y = Ф(x, С1, С2, … , Сn),
содержащая некоторые постоянные (параметры) С1, С2, … , Сn, и обладающая следующими свойствами:
Ф(x, С1, С2, … , Сn) является решением уравнения при любых допустимых значениях С1, С2, … , Сm;
для любых начальных данных y(x0) = y0, y '(x0) = y1, y ''(x0) = y2, … , y(n − 1)(x0) = yn − 1, для которых задача Коши имеет единственное решение,существуют значения постоянных С1 = A1, С2 = A2, … , Сn = An, такие что решение y = Ф(x, A1, A2, …, An) удовлетворяет заданным начальным условиям.
Иногда частное или общее решение уравнения удается найти только в неявной форме: f(x, y) = 0 или G(x, y, С1, С2, ..., Сn) = 0.
Такие неявно заданные решения называются частным интегралом или общим интегралом уравнения.
Линейным дифференциальным уравнением n –го порядка называется уравнение вида
y(n) + an-1(x)y(n - 1) + ... + a1(x)y' + a0(x)y = f(x).
Коэффициенты уравнения an-1(x), an-2(x), ..., a1(x), a0(x) и правую часть f(x) полагаем непрерывными на отрезке [a;b] .
y(n) + an-1(x)y(n - 1) + ... + a1(x)y' + a0(x)y = f(x) — неоднородное линейное дифференциальное уравнение n–го порядка,
y(n) + an-1(x)y(n - 1) + ... + a1(x)y' + a0(x)y = 0 — однородное линейное дифференциальное уравнение n–го порядка.