
- •«Омский государственный технический университет»
- •В.С. Калекин
- •Процессы и аппараты химической технологии.
- •Массообменные и механические процессы
- •Учебное пособие
- •Введение
- •1. Основы массопередачи
- •1.1. Общие сведения о массообменных процессах
- •1.2. Основное уравнение массопередачи
- •1.3. Материальный баланс массообменных процессов
- •1.4. Движущая сила массообменных процессов
- •1.5. Модифицированные уравнения массопередачи
- •1.6. Основные законы массопередачи
- •1.7. Подобие процессов переноса массы
- •1.8. Связь коэффициентов массопередачи и массоотдачи
- •1.9. Массопередача с твердой фазой
- •2. Абсорбция
- •2.1. Равновесие при абсорбции
- •2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- •2.3. Cхемы абсорбционных процессов
- •2.4. Конструкции колонных абсорбционных аппаратов
- •2.5. Десорбция
- •3. Перегонка жидкостей
- •3.1. Общие сведения
- •3.2. Идеальные и неидеальные смеси
- •3.3. Простая перегонка
- •3.4. Ректификация
- •3.5. Непрерывно и периодически действующие ректификационные установки
- •3.6. Ректификация многокомпонентных смесей
- •3.7. Тепловой баланс процесса ректификации
- •3.8. Специальные виды перегонки
- •3.9. Устройство ректификационных аппаратов
- •4. Экстракция
- •4.1. Равновесие при экстракции
- •4.2. Материальный баланс экстракции
- •4.3. Принципиальные схемы процесса экстракции
- •4.4. Конструкции экстракторов
- •5. Адсорбция
- •5.1. Равновесие в процессах адсорбции
- •5.2. Промышленные адсорбенты
- •5.3. Конструкции адсорбционных аппаратов
- •6. Сушка
- •6.1. Равновесие в процессах сушки
- •6.2. Конструкции сушилок
- •Баланс влаги в конвективной сушилке
- •Тепловой баланс конвективной сушильной установки
- •7. Кристаллизация и растворение
- •7.1. Общие сведения
- •7.2. Равновесие при кристаллизации
- •7.3. Кинетика процесса кристаллизации
- •7.4. Факторы, влияющие на процесс кристаллизации
- •7.5. Материальный и тепловой балансы кристаллизации
- •7.6. Кристаллизаторы
- •8. Процессы мембранного разделения смесей
- •8.1. Сущность процесса мембранного разделения смесей
- •8.2. Мембраны
- •8.3. Кинетика процессов мембранного разделения смесей
- •8.4. Влияние различных факторов на мембранное разделение
- •8.5. Мембранные аппараты
- •9. Механические процессы
- •9.1. Измельчение твердых материалов
- •9.2. Физико-механические основы измельчения
- •9.3. Размольно-дробильные машины
- •9.4. Классификация и сортировка материалов
- •Библиографический список
- •Содержание
- •8.4. Влияние различных факторов на мембранное разделение 157
- •8.5. Мембранные аппараты 160
5.2. Промышленные адсорбенты
Промышленные адсорбенты должны удовлетворять различным требованиям:
иметь большую адсорбционную способность (поглощать большие количества адсорбтива при малой концентрации в газовой или жидкой фазах); обладать высокой селективностью; быть химически инертными по отношению к компонентам смеси; иметь высокую механическую прочность; обладать способностью к регенерации; иметь низкую стоимость.
В промышленной практике наиболее широкое применение нашли следующие типы адсорбентов: активные (активированные) угли, силикагели, алюмогели и цеолиты (молекулярная сита), которые отличаются друг от друга как адсорбционными свойствами, так и размерами гранул и плотностью.
Пористые адсорбенты могут иметь макропоры, переходные поры и микропоры.
Макропоры
имеют средние радиусы в пределах
1 000–2 000
(1
=10-10
м) и удельную поверхность (0,52)
м2/г. Малая величина удельной
поверхности, свидетельствует о том, что
макропоры не играют заметной роли в
величине адсорбции. Они выполняют роль
транспортных каналов.
Переходные поры со средними радиусами от 15–16 до 1 000–2 000 , удельной поверхностью 400 м2/г. Переходные поры заполняются полностью при достаточно высоких парциальных давлениях пара сорбируемого компонента.
Микропоры имеют средние размеры радиусов ниже 15-16 . По размерам поры соизмеримы с размерами адсорбируемых молекул. Удельный объем микропор составляет примерно 0,2–0,6 см3/г.
Основная роль при адсорбции компонента в малых концентрациях принадлежит микропорам, объем которых отражает предельный объем адсорбционного пространства – одного из основных параметров пористой структуры адсорбента.
Активные угли содержат все разновидности пор. Изготавливаются из древесины, торфа, каменного угля, скорлупы орехов, косточек плодов, а также костей животных путем обугливания в нейтральной среде при t = 600–900 0С (без доступа воздуха). Активируют водяным паром и смесью двуокиси углерода с водяным паром и кислородом воздуха. Нагревательный исход сырья в токе пара или смеси газов при 800–900 0С позволяет получить уголь хорошего качества.
Активирование можно осуществлять также пропитыванием угля-сырья неорганическими растворами хлорида цинка, фосфорной кислотой. Затем активные угли гранулируют, получают цилиндры диаметром 1–3 мм и длиной 3–6 мм.
Активные угли значительно лучше поглощают пары органических веществ, чем пары воды, поэтому их используют для рекуперации летучих растворителей. Недостаток – горючесть.
Силикагели и алюмогели. Негорючие. Силикагели изготавливаются из геля кремниевой кислоты. Гель в свою очередь получают действием серной или соляной кислоты на раствор силиката натрия. Выделяющийся гель (SiO2nH2O) промывают водой, а затем просушивают при t = 100–150 0C до влажности 5–7 %. После сушки силикагель представляет собой твердую стекловидную или матовую массу с высокой пористостью. Последние стадии – прокалка при 800 0С, затем дробление. Силикагели используют в виде зерен размером 0,2–7 мм для осушки газовых и жидких потоков, минеральных масел, керосина, сырого бензина и т. п., а также в качестве носителей катализаторов. Существенное преимущество алюмогелей по сравнению с силикагелями – стойкость к воздействию жидкости. Алюмогель способен поглощать от 4 до 10 % воды от собственного веса. Кроме того, алюмогель используют для улавливания углеводородных примесей из воздуха, извлечения фтора из различных сред. Десорбцию паров воды из алюмогелей проводят горячим воздухом при t = 150–250 0C.
Цеолиты – новый тип адсорбентов, представляет собой мелкие пористые кристаллы природных или синтетических минералов цеолитов, в которых размеры входных «окон» (отверстий) в большие полости близки к размерам поглощенных молекул. Одни молекулы из смеси веществ могут пройти в эти «окна» и адсорбенты в кристаллах цеолитов, другие, более крупные молекулы остаются в носителе.
Эффективное применение синтетических цеолитов возможно, например, для глубокой осушки газов, реактивных топлив, трансформаторных масел, для выделения этилена и пропилена из газов коксования, газов нефтепереработки, для повышения октанового числа бензинов и т. д. Исключительно высокая осушительная способность цеолитов (в области малых концентраций) обуславливает целесообразное их использование в завершающей стадии после осушки силикагелем и алюмогелем.