Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Массопередача в док.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
10.36 Mб
Скачать

3.4. Ректификация

Достаточно высокую степень разделения однородных жидких смесей на составляющие компоненты можно достигнуть с помощью ректификации. Сущность процессов, из которых складывается процесс, можно представить на диаграмме (рис. 3.11).

Если нагреть исходную смесь состава до температуры кипения, можно получить пар, находящийся с жидкостью в равновесии (т. в ). Конденсация этого пара дает жидкость состава , обогащенную НК ( ).

Последующий нагрев этой жидкости до температуры кипения Т2 приведет к получению пара (т. d), конденсация которого даст жидкость с еще большим содержанием НК – . Проводя таким образом последовательно ряд процессов испарения жидкости и конденсации паров, можно получать в итоге жидкость (дистиллят), представляющую собой практически чистый НК.

В простейшем виде процесс многократного испарения можно осуществить в многоступенчатой установке, состоящей из последовательно соединенных испарителей и конденсаторов. Недостатками такой установки являются большая металлоемкость и значительные потери тепла в окружающую среду.

Наиболее четкое, полное и экономичное разделение исходной смеси на компоненты лучше всего производить в ректификационных колоннах.

Т

Рис. 3.11. Изображение процесса разделения бинарной смеси

ректификацией в диаграмме

Процесс ректификации осуществляется путем многократного контакта между неравновесными жидкой и паровой фазами, движущимися противотоком относительно друг друга.

При взаимодействии фаз между ними происходит массо- и теплообмен, обусловленные стремлением системы к состоянию равновесия. В результате каждого контакта компоненты перераспределяются между фазами: пар обогащается НК, а жидкость – ВК. Многократный контакт фаз приводит к практически полному разделению исходной смеси.

Таким образом, отсутствие равновесия при движении фаз с определенной скоростью относительно друг друга с многократным их контактом является необходимыми условиями проведения ректификации.

Процессы ректификации осуществляются периодически или непрерывно при различных давлениях: атмосферном, повышенном (для разделения смесей, являющихся газообразными при нормальных температурах) и под вакуумом (для разделения смесей высококипящих веществ).

3.5. Непрерывно и периодически действующие ректификационные установки

Непрерывно действующие ректификационные установки наиболее широко распространены в процессах химической технологии. Рассмотрим сущность процесса ректификации на простейшем примере разделения двухкомпонентной смеси.

Колонна 1 снабжается вспомогательным оборудованием, в состав которого, например, входят (рис. 3.12): кипятильник 2, дефлегматор 3, делитель флегмы 4, подогреватель 5, холодильники 6, 7, сборники жидкостей 8, 9, насосы 10.

Для создания восходящего потока пара в колонне в нижней части её или в кипятильнике 2 подводится тепло для испарения жидкой смеси. Пары проходят через слой жидкости на нижней тарелке.

Пусть концентрация жидкости на первой тарелке равна , а ее температура . В результате взаимодействия между жидкостью и паром, имеющим более высокую температуру, жидкость частично испаряется, при этом в пар переходит преимущественно НК. Поэтому на следующую тарелку пар поступает с содержанием НК .

Рис. 3.12. Схема непрерывно действующей ректификационной установки:

1 – колонна; 2 – кипятильник; 3 – дефлегматор; 4 – делитель флегмы;

5 – подогреватель исходной смеси; 6 – холодильник дистиллята;

7 – холодильник остатка; 8 – сборник остатка; 9 – сборник дистиллята;

10 – насос

Испарение жидкости на тарелке происходит за счет тепла конденсации пара. Из пара конденсируется и переходит в жидкость преимущественно ВК, содержание которого в поступающем паре на тарелку выше равновесного с составом жидкости на тарелке. При равенстве теплот испарения компонентов бинарной смеси для испарения 1 моля НК необходимо сконденсировать 1 моль ВК, т. е. фазы на тарелке обмениваются эквимолекулярными количествами компонентов.

На второй тарелке жидкость имеет состав и содержит больше НК, чем на первой ( ). Эта жидкость кипит при более низкой температуре ( ). Контактируя с ней, пар состава частично конденсируется, обогащается НК и удаляется на вышерасположенную тарелку, имея состав и т. д.

Таким образом, пар, представляющий собой на выходе из кипятильника почти чистый ВК, по мере движения вверх все более обогащается НК и покидает верхнюю тарелку колонны почти чистым НК.

Пары конденсируются в дефлегматоре 3, охлаждаемом, например, водой, и получаемая жидкость делится на два потока: дистиллят – целевой продукт и флегму, которая направляется в верхнюю часть колонны. Следовательно, с помощью дефлегматора в колонне создается нисходящий поток жидкости.

Жидкость, поступающая на орошение колонны (флегма), представляет собой практически чистый НК. Стекая вниз по колонне и взаимодействуя с паром, жидкость все более обогащается ВК, конденсирующимся из пара. Когда жидкость достигает нижней тарелки, она становится практически чистым ВК. Снизу колонны часть ВК выводится остатком в виде целевого продукта, а другая часть поступает на испарение в кипятильник, обогреваемый глухим паром или другим теплоносителем.

На некотором расстоянии от верха колонны к жидкости из дефлегматора присоединяется исходная смесь, поступающая на питающую тарелку колонны. Обычно смесь предварительно подогревают в подогревателе исходной до температуры кипения жидкости на питающей тарелке.

Питающая тарелка делит колонну на две части, имеющие различное назначение. В верхней части колонны наибольшее укрепление паров, т. е. обогащение их НК. Поэтому эта часть колонны называется укрепляющей. В нижней части необходимо максимально удалить из жидкости НК, чтобы в кипятильник стекала жидкость, близкая по составу к чистому ВК. В соответствие с этим эту часть колонны называют исчерпывающей.

Периодически действующие ректификационные установки применятся в производствах небольших масштабов.

Схема периодически действующей установки приведена на рис. 3.13. Исходная смесь загружается в куб 1, где нагревается до температуры кипения и испаряется. Пары проходят через ректификационную колонну 2, взаимодействуя в противотоке с жидкостью, возвращаемой из дефлегматора 3.

В дефлегматоре богатые легколетучим компонентом пары конденсируются, и конденсат поступает в делитель потока 4. Часть жидкости из делителя потока направляется на орошение колонны, а другая часть – дистиллят – проходит через холодильник 5 и направляется в сборники 6.

После того как достигнут заданный состав остатка в кубе (это можно установить по температуре кипения жидкости), остаток сливают, загружают куб исходной смесью и операцию повторяют.

Сравнивая периодически действующую колонну с ректификационной колонной непрерывного действия, следует отметить, что первая колонна работает, подобно верхней части непрерывнодействующей колонны, как колонна для укрепления паров, а куб выполняет роль исчерпывающей части.

Рис. 3.13. Схема установки периодической ректификации:

1 – куб; 2 – насадочная ректификационная колонна; 3 – дефлегматор;

4 – делитель флегмы; 5 – холодильник; 6 – сборники дистиллята.

Допущения, принимаемые для расчета процессов ректификации. Мольные теплоты испарения компонентов бинарной жидкой смеси обычно близки по величинам, в отличие массовых, которые существенно различаются между собой. В этой связи количества и составы фаз при анализе и расчете процесса наиболее удобно выражать в мольных величинах. В соответствие с этим расходы фаз наиболее целесообразно выражать в молях, а составы – в мольных долях НК.

Примем следующие допущения, мало искажающие результаты, но существенно упрощающие расчет:

1. Разделяемая смесь следует правилу Трутона, согласно которому отношение мольной теплоты испарения или конденсации к абсолютной температуре кипения для всех жидкостей является приближенно постоянной. Для смеси, состоящей из компонентов:

или при ,

.

Отсюда следует, что при конденсации 1 кмоль ВК в колонне испаряется 1 кмоль НК, т. е. количество паров (в кмолях), поднимающихся по колонне постоянно ( ).

2. Состав пара , удаляющегося из колонны в дефлегматор, равен составу дистиллята . При этом допускается, что укрепляющим действием дефлегматора в процессе конденсации паров можно пренебречь и принять , где – состав дистиллята в паровой фазе.

3. Состав пара , поднимающегося из кипятильника в колонну, равен составу жидкости , стекающей в кипятильник из нижней части колонны. Принимая , пренебрегают исчерпывающим действием кипятильника, т. е. изменением состава фаз при испарении в нем жидкости.

4. Теплоты смешения компонентов разделяемой смеси равны нулю.

Кроме того, в расчетах принимают, что смесь, подлежащая разделению, поступает в колонну нагретой до температуры кипения на питающей тарелке.

Для составления материального баланса ректификационной колонны непрерывного действия обозначим: – количество смеси, поступающей на ректификацию; и – количества получающегося дистиллята и остатка соответственно; , , – содержание легколетучего компонента в исходной смеси, дистилляте и остатке, соответственно (мольн. доли).

Материальный баланс процесса разделения:

для всей смеси

;

для легколетучего компонента в смеси

.

Из этих равенств обычно вычисляют неизвестные количества дистиллята и остатка:

;

.

Уравнения рабочих линий. Материальный баланс ректификации по летучему компоненту может быть выражен общим для всех массообменных процессов равенством:

.

Пусть количество взаимодействующих паров составляет , а жидкости . Тогда, согласно принятым обозначениям, расход пара , расход жидкости для верхней части ректификационной колонны – для нижней части аппарата – , где – флегмовое число, – число питания. Таким образом, для верхней и нижней частей аппарата уравнения материального баланса имеют вид

; (3.6)

. (3.7)

Для произвольного сечения верхней части аппарата, где рабочие концентрации и , и верха, где концентрация и , из уравнения (3.7) получим

(3.8)

или

. (3.9)

Для произвольного сечения нижней части аппарата, где рабочие концентрации и , и низа, где концентрация и , из уравнения (3.7) найдем

или

. (3.10)

Уравнения (3.9) и (3.10) являются уравнениями прямых линий рабочих концентраций для верхней и нижней части ректификационного аппарата.

Кроме того, из уравнения (3.6) для сечения, соответствующего вводу исходной смеси ( ), и верхней части аппарата ( , ) получаем

откуда

.

Положения линий рабочих концентраций в диаграмме зависят не только от состава исходной смеси, но также от ее тепловых параметров. Возможны следующие случаи питания исходной смесью: 1) при температуре ниже, чем температура кипения; 2) при температуре кипения; 3) смесью насыщенного пара и жидкости; 4) насыщенным паром; 5) перегретым паром.

Рассмотрим наиболее распространенный случай питания аппарата жидкой смесью при температуре кипения. В этом случае возможны два предельных положения рабочих линий (рис. 3.14): 1–3´ для верхней и 3–2 нижней части колонны.

Рис. 3.14. Расположение рабочих линий и равновесия с вариантом питания колонны исходной смесью при температуре кипения

Первое положение соответствует бесконечно большому флегмовому числу, при котором отрезок, отсекаемый на оси ординат рабочей линией верхней части колонны, , и, следовательно, изменение рабочих концентраций в аппарате отвечает уравнению и обе рабочие линии лежат на диагонали диаграммы. В этих условиях аппарат работает без отбора дистиллята и кубовой жидкости. Как следует из рисунка, бесконечно большому флегмовому числу соответствует максимальная движущая сила.

Второе предельное положение рабочих линий (1-3´´-2) соответствуют пересечению их на равновесной кривой в точке 3´´. Очевидно, что в этой точке движущая сила равна нулю, т. е. и, следовательно, ректификационный аппарат должен иметь бесконечно большую поверхность фазового контакта. Флегмовое число при этом имеет наименьшее значение:

,

где – состав пара, находящегося в равновесии с жидкостью, поступающей на ректификацию.

Положение рабочих линий 1-3-2 соответствует рабочему состоянию ректификационной аппаратуры. Точка 3, очевидно, может приближаться либо к верхнему пределу 3´´, либо к нижнему 3´. Соответственно этому изменяются флегмовое число и движущая сила процесса.

Поскольку проведение процесса ректификации связано с испарением жидкости и соответствующими затратами тепла, можно сформулировать одно из важнейших правил ректификации: с уменьшением флегмового числа и, следовательно, затрат тепла на проведение процесса уменьшается движущая сила, и наоборот.

Периодически действующие установки, в свою очередь, подразделяются на установки, работающие в условиях режима постоянного флегмового числа, и установки, работающие в условиях, обеспечивающих постоянный состав дистиллята.

Для обеспечения постоянного состава дистиллята процесс ректификации необходимо проводить при непрерывно изменяющемся флегмовом числе: минимальном в начале процесса и максимальном в конце. По мере отгонки летучего компонента концентрация его в кубе уменьшается до , проходя через ряд промежуточных значений , и т. д. Определение положения точек а, б и т. д. (рис. 3.15), характеризующих соответствующее флегмовое число, возможно путем подбора, а именно: их положение должно отвечать равенству чисел единиц переноса для границ концентраций , и т. д. в пределах концентраций .

Рис. 3.15. Изображение рабочих линий процесса периодической

ректификации при

Очевидно, что проведение процесса ректификации периодическим методом при режиме практически затруднительно, поскольку для этого требуется непрерывное и строго программное изменение питания колонны парами и флегмой. Поэтому этот режим ректификации в промышленности применяют очень редко.

Широко распространен процесс ректификации, проводимый периодическим методом в условиях поддержания постоянного флегмового числа. Этот процесс для малотоннажных производств наиболее предпочтителен даже в сравнении с процессом непрерывной ректификации. Это преимущество заключается в том, что разделение смеси из любого числа компонентов возможно при помощи одного ректификационного аппарата.

При постоянном флегмовом числе наклон рабочих линий не зависит от концентраций (рис. 3.16).

Пусть в первый момент ректификации концентрация летучего компонента в кубовой жидкости составляет , а дистилляте . По мере течения процесса концентрация летучего компонента в кубовой жидкости будет уменьшаться и принимать значения , и т. д., вплоть до конечного значения . Соответственно будет уменьшаться и концентрация летучего компонента в дистилляте: , , и т. д. В итоге процесса будет получен дистиллят среднего состава в пределах и остаток состава .

Рис. 3.16. Изображение рабочих линий процесса периодической ректификации при

По ряду значений флегмовых чисел, отвечающих различным концентрациям летучего компонента в жидкости, можно установить зависимость и путем графического интегрирования найти среднее флегмовое число:

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]