- •«Омский государственный технический университет»
- •В.С. Калекин
- •Процессы и аппараты химической технологии.
- •Массообменные и механические процессы
- •Учебное пособие
- •Введение
- •1. Основы массопередачи
- •1.1. Общие сведения о массообменных процессах
- •1.2. Основное уравнение массопередачи
- •1.3. Материальный баланс массообменных процессов
- •1.4. Движущая сила массообменных процессов
- •1.5. Модифицированные уравнения массопередачи
- •1.6. Основные законы массопередачи
- •1.7. Подобие процессов переноса массы
- •1.8. Связь коэффициентов массопередачи и массоотдачи
- •1.9. Массопередача с твердой фазой
- •2. Абсорбция
- •2.1. Равновесие при абсорбции
- •2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- •2.3. Cхемы абсорбционных процессов
- •2.4. Конструкции колонных абсорбционных аппаратов
- •2.5. Десорбция
- •3. Перегонка жидкостей
- •3.1. Общие сведения
- •3.2. Идеальные и неидеальные смеси
- •3.3. Простая перегонка
- •3.4. Ректификация
- •3.5. Непрерывно и периодически действующие ректификационные установки
- •3.6. Ректификация многокомпонентных смесей
- •3.7. Тепловой баланс процесса ректификации
- •3.8. Специальные виды перегонки
- •3.9. Устройство ректификационных аппаратов
- •4. Экстракция
- •4.1. Равновесие при экстракции
- •4.2. Материальный баланс экстракции
- •4.3. Принципиальные схемы процесса экстракции
- •4.4. Конструкции экстракторов
- •5. Адсорбция
- •5.1. Равновесие в процессах адсорбции
- •5.2. Промышленные адсорбенты
- •5.3. Конструкции адсорбционных аппаратов
- •6. Сушка
- •6.1. Равновесие в процессах сушки
- •6.2. Конструкции сушилок
- •Баланс влаги в конвективной сушилке
- •Тепловой баланс конвективной сушильной установки
- •7. Кристаллизация и растворение
- •7.1. Общие сведения
- •7.2. Равновесие при кристаллизации
- •7.3. Кинетика процесса кристаллизации
- •7.4. Факторы, влияющие на процесс кристаллизации
- •7.5. Материальный и тепловой балансы кристаллизации
- •7.6. Кристаллизаторы
- •8. Процессы мембранного разделения смесей
- •8.1. Сущность процесса мембранного разделения смесей
- •8.2. Мембраны
- •8.3. Кинетика процессов мембранного разделения смесей
- •8.4. Влияние различных факторов на мембранное разделение
- •8.5. Мембранные аппараты
- •9. Механические процессы
- •9.1. Измельчение твердых материалов
- •9.2. Физико-механические основы измельчения
- •9.3. Размольно-дробильные машины
- •9.4. Классификация и сортировка материалов
- •Библиографический список
- •Содержание
- •8.4. Влияние различных факторов на мембранное разделение 157
- •8.5. Мембранные аппараты 160
3.3. Простая перегонка
К простой перегонке следует отнести фракционную перегонку, перегонку в токе носителя (с водяным паром или инертным газом) и молекулярную перегонку.
Фракционная перегонка проводится периодически (рис. 3.7). Смесь загружают в куб 1, обогреваемый паром (дымовыми газами) через змеевик или рубашку.
Рис. 3.7. Схема установки для фракционной перегонки:
1 – перегонный куб; 2 – конденсатор-холодильник;
3 – сборники фракций дистиллята
После нагрева смеси до температуры кипения образующие пары отводятся из куба, конденсируются в теплообменнике 2. Конденсат собирается в сборники 3. По окончании операции остаток удаляется из куба.
По мере испарения смеси содержание летучего компонента в дистилляте непрерывно уменьшается. В начале процесса это содержание максимальное, в конце – минимальное. Это позволяет в случае необходимости получать несколько фракций дистиллятов различного состава, отводя их в разные сборники. Отчего перегонка называется фракционной. Перегонка может проводиться при атмосферном давлении или под вакуумом.
В процессе перегонки образующийся пар отводится из аппарата и в каждый момент времени находится в равновесии с оставшейся жидкостью.
Пусть в некоторый
момент времени количество жидкости в
аппарате равно
,
а ее состав
.
За бесконечно малый промежуток времени
количество жидкости и ее состав меняются
и составляют соответственно (
)
и
.
Количество образующегося за этот
промежуток времени пара равно уменьшению
количества жидкости
,
а ее состав
*
является равновесным с
.
Содержание летучего компонента в
жидкости к началу рассматриваемого
промежутка времени составляет
,
а к концу
.
Количество же летучего компонента,
перешедшего за этот промежуток времени
в пар, равно
.
Таким образом, уравнение материального
баланса по летучему компоненту за
рассматриваемый промежуток времени
может быть записано следующим образом:
.
Раскрывая скобки
и пренебрегая членом
,
можно получить
или
.
Пределы
интегрирования для левой части
– количество начальной смеси и
– количество остатка, для правой
концентрации –
и
.
В результате интегрирования
.
(3.5)
Вид функции
определяется формой кривой равновесия
и не может быть установлен аналитически
для каждого конкретного случая перегонки.
Поэтому интегрирование правой части
уравнения (3.5) выполняют графически –
путем построения зависимости
от
в пределах от
до
и определением площади под кривой (так
же как и при расчете ЧЕП).
Затем по уравнению
(3.5), зная количество исходной смеси
,
вычисляют количество остатка
и количество перегнанной жидкости
.
Средний состав
полученного дистиллята
рассчитывают
из материального баланса по низкокипящему
компоненту:
.
Конечной целью расчета простой перегонки является определение количества жидкости, которое необходимо перегнать для того, чтобы получить в кубе остаток заданного состава и дистиллят требуемого среднего состава.
Простую перегонку проводят при атмосферном давлении или под вакуумом, присоединяя сборники дистиллята к источнику вакуума. Применение вакуума дает возможность разделять термически малостойкие смеси и в связи со снижением температуры кипения раствора использовать для обогрева куба пар более низких параметров.
Простая перегонка с дефлегмацией. Степень разделения компонентов в условиях простой перегонки может быть повышена применением дефлегмации (рис. 3.8).
Рис. 3.8. Схема установки для простой перегонки с дефлегмацией:
1 – перегонный куб; 2 – дефлегматор; 3 – конденсатор-холодильник;
4 – сборники
В этом случае пары, выходящие из куба 1, поступают в дефлегматор 2, в котором они конденсируются не полностью, а частично. При частичной конденсации в жидкость переходит наименее летучий компонент, а пары обогащаются летучим компонентом. Получаемый в дефлегматоре конденсат или флегма возвращается в перегонный аппарат и подвергается многократному испарению.
Перегонка в токе водяного пара. Понижение температуры кипения разделяемой смеси может быть достигнуто не только под вакуумом, но и путем ведения в разделяемую смесь дополнительного компонента – водяного пара. В этом процессе отгоняемый компонент получают обычно в виде смеси с водой при температуре кипения, меньшей в условиях атмосферного давления, чем температура кипения воды.
Технологическая схема процесса показана на рис. 3.9. Исходную смесь загружают в куб 1, где ее нагревают греющим паром до температуры перегонки. Затем через смесь пропускают острый пар, взаимодействующий с компонентами смеси.
Рис. 3.9. Схема установки для перегонки с водяным паром:
1 – куб с паровой рубашкой; 2 – конденсатор; 3 – сепаратор.
Образующаяся в результате взаимодействия паровая смесь поступает в конденсатор 2 и далее в сепаратор 3. В этом аппарате нерастворимые друг в друге жидкости расслаиваются и стекают в соответствующие сборники.
Соотношение между количествами введенного водяного пара и отогнанного компонента может быть выражено следующим образом. Согласно закону Дальтона мольные доли компонента и воды:
;
,
отсюда
или
,
где
– молекулярные массы компонента и
воды.
Перегонка в токе с инертным газом. При перегонке смесей вместо водяного пара иногда применяют инертные газы – азот, двуокись углерода и др. Перегонка в токе неконденсирующегося инертного газа позволяет значительно снизить температуру испарения разделяемой смеси. При перегонке в токе водяного пара снижение температуры испарения разделяемой смеси ограничено температурой его конденсации.
Молекулярная перегонка. Применяют для разделения компонентов, кипящих при высоких температурах и не обладающих необходимой термической стойкостью.
Этот процесс проводят под глубоким вакуумом, соответствующим остаточному давлению 10-3–10-4 мм рт. ст. Процесс молекулярной дистилляции протекает путем испарения жидкости с ее поверхности при отсутствии кипения. Поэтому молекулярная дистилляция, в отличие от других способов перегонки, не характеризуется некоторыми постоянными температурой и давлением. При таком вакууме молекулы легко преодолевают силы взаимного притяжения, а длина свободного пробега их резко возрастает.
Если расстояние между поверхностями испарения и конденсации меньше длины свободного пробега молекул, то отрывающиеся от поверхности испарения молекулы летучего компонента непосредственно попадают на поверхность конденсации и улавливаются на ней. Расстояние между поверхностями испарения и конденсации составляет обычно 20–30 мм, а разность температур между ними порядка 100 ºС.
Разделяющий
эффект молекулярной дистилляции
определяется не отношением давлений
насыщенного пара компонентов смеси,
или относительной летучестью, а отношением
скоростей испарения компонентов смеси,
или коэффициентом разделения
.
Скорость испарения любого компонента идеального раствора согласно молекулярно-кинетической теории газов пропорциональна его мольной доле в растворе:
,
где
,
– давление насыщенного пара, молекулярный
вес чистого компонента и температура
кипения смеси, соответственно.
Для бинарной смеси коэффициент разделения
.
Отсюда следует,
что степень разделения при молекулярной
дистилляции больше, чем при равновесной
в
раз.
Для молекулярной дистилляции применяются пленочные аппараты различных конструкций, приведенные в специальной технической литературе. На рис. 3.10. показана схема аппарата для молекулярной перегонки.
Цилиндр 1 имеет внутри спираль для электронагрева и является испарителем. Цилиндр 2 является конденсатором и снабжен рубашкой 3, в которой движется охлаждающий агент. Исходная смесь вводится через патрубок в воронку 4 и стекает пленкой по наружной поверхности испарителя. Остаток и дистиллят, собирающийся на внутренней поверхности конденсатора, удаляются через патрубки в нижней части аппарата. В кольцевом пространстве между испарителем и конденсатором вакуум-насосом поддерживается требуемый вакуум.
Молекулярная дистилляция является относительно дорогим способом разделения. Ее применяют в производствах пластмасс, масел и смазок, жирных кислот, эфиров и др.
Рис. 3.10. Схема аппарата для молекулярной перегонки: 1 – обогреваемый цилиндр; 2 – охлаждаемый цилиндр; 3 – рубашка; 4 – воронка
