
- •Конспект лекций
- •3.1. Термодинамика
- •3.1.1. Содержание и метод термодинамики
- •3.1.2. Основные понятия термодинамики
- •3.1.3. Газовые смеси
- •3.1.4. Законы идеальных газов
- •3.1.5. Первое начало термодинамики
- •3.1.5.1. Первое начало термодинамики как математическое выражение закона сохранения энергии
- •3.1.5.2. Первое начало термодинамики простого тела
- •3.1.6. Понятие теплоёмкости
- •3.1.7. Первое начало термодинамики для идеальных газов
- •3.1.7.1. Закон Майера
- •8314 Дж/(кмольк).
- •3.1.7.2. Принцип существования энтропии идеального газа
- •3.1.8. Термодинамические процессы
- •3.1.8.1. Классификация термодинамических процессов
- •3.1.8.2. Работа в термодинамических процессах
- •3.1.9. Круговые процессы (циклы)
- •3.1.9.1. Тепловые машины, понятие термического к.П.Д.,
- •3.1.9.2. Цикл Карно
- •3.1.10. Второе начало термодинамики
- •3.1.11. Термодинамические циклы двигателей внутреннего сгорания
- •3.1.11.1. Циклы поршневых двигателей внутреннего сгорания
- •3.1.11.2. Циклы газотурбинных установок
- •3.1.12. Типовые задачи к разделам курса «термодинамика»
- •3.1.12.1. Параметры, уравнение состояния идеального газа
- •3.1.12.2. Газовые смеси
- •3.1.12.3. Первое начало термодинамики
- •3.1.12.4. Процессы изменения состояния вещества
- •3.1.12.5. Термодинамические циклы
- •4.1.Теплопередача
- •4.1.1. Теплопередача, её предмет и метод, формы передачи теплоты
- •4.2. Теплопроводность
- •4.2.1. Температурное поле
- •4.2.2. Температурный градиент
- •4.2.3. Тепловой поток. Закон Фурье
- •4.2.4. Коэффициент теплопроводности
- •4.2.5. Дифференциальные уравнения теплопроводности
- •4.2.6. Условия однозначности для процессов теплопроводности
- •4.2.7. Отдельные задачи теплопроводности при стационарном режиме
- •4.3. Конвективный теплообмен
- •4.3.1. Основные понятия и определения
- •4.3.2. Теория размерностей
- •Размерности и показатели степени при конвективном
- •4.3.3. Теория подобия
- •4.3.4. Критериальные уравнения
- •4.3.5. Некоторые случаи теплообмена
- •4.3.6. Расчетные зависимости конвективного теплообмена
- •4.3.7. Теплообмен при естественной конвекции
- •4.3.8. Теплоотдача при вынужденном движении жидкости в трубах и каналах
- •4.3.9. Теплоотдача при поперечном обтекании труб
- •4.4. Тепловое излучение
- •4.4.1. Основные понятия и определения
- •4.4.2. Виды лучистых потоков
- •4.4.3. Законы теплового излучения
- •4.4.4. Особенности излучения паров и реальных газов
- •4.5. Теплопередача
- •4.5.1. Теплопередача между двумя теплоносителями через разделяющую их стенку
- •4.5.2. Оптимизация (регулирование) процесса теплопередачи
- •4.5.3. Теплопередача при переменных температурах (расчет теплообменных аппаратов)
3.1.5. Первое начало термодинамики
3.1.5.1. Первое начало термодинамики как математическое выражение закона сохранения энергии
Первое начало термодинамики — математическое выражение закона сохранения и превращения энергии применительно к тепловым процессам в его наиболее общей форме. Открытию закона сохранения и превращения энергии предшествовали многочисленные экспериментальные и теоретические исследования в области физики и химии, развитие принципа, исключающего построение вечного двигателя первого рода (1775 г.), открытие закона Гесса (1840 г.) и принципа эквивалентности (1842-1850 гг.) как завершающего этапа в открытии закона сохранения энергии.
Суть I начала термодинамики заключается в том, что работа может совершаться только за счет теплоты или какой-либо другой формы энергии. Внутренняя энергия системы является однозначной функцией ее состояния и изменяется только под влиянием внешних воздействий. При этом все возможные виды внешнего энергетического взаимодействия сводятся лишь к передаче теплоты и работы. Это значит, что изменение внутренней энергии тела или системы тел (U=U2U1) равно алгебраической сумме подведенных извне количеств теплоты Q*1,2 и внешней работы (L*1,2), выполненной телом в процессе.
U2U1=Q*1,2AL*1,2; (3.31)
Q*1,2=U2U1+AL*1,2 (3.32)
или в дифференциальной форме:
Q*=dU+AL*, (3.33)
где А — тепловой эквивалент работы (далее его опускаем). А=1 Дж/(Нм) в системе СИ; в МКСС А=1/427 ккал/(кгм).
Уравнения первого начала термодинамики в приведенной форме называются уравнениями первого начала термодинамики по внешнему балансу теплоты и работы. Действительно, приведенные уравнения отражают только взаимодействие тел с окружающей системой. Они не учитывают и не отражают те необратимые потери, которые есть в реальных условиях взаимодействия тела с окружающей средой.
Внешняя (эффективная) работа L* определяется разностью термодинамической работы L и необратимых потерь работы L**:
L*=LL**. (3.34)
Потерянная в необратимых процессах работа L** полностью превращается в теплоту внутреннего теплообмена Q**, которая передается этому же телу или телам внешней системы
L**=Q**0. (3.35)
Следовательно, полное количество теплоты Q, полученное телом, будет определяться как сумма теплоты Q*, подведенной извне, и теплоты внутреннего теплообмена Q**:
Q=Q*+Q**
или Q=Q*+Q**=dU+L*+L**;
L*+L**=L;
Q=Q*+Q**=dU+L. (3.36)
Последнее уравнение называется уравнением первого начала по балансу рабочего тела. Оно может использоваться для анализа реальных процессов.
3.1.5.2. Первое начало термодинамики простого тела
Простым телом называют тело, состояние которого вполне определяется двумя независимыми переменными (Р, ; , t; Р, t).
Для таких тел термодинамическая работа определяется как обратимая работа изменения объема:
L=PdV; l=L/G=Pd.
При изучении процессов перемещения газов или жидкостей из области одного давления в область другого в расчеты вводится потенциальная работа:
= dP = Pdd(P).
I начало термодинамики по балансу рабочего тела для замкнутого пространства и единицы количества вещества запишется:
q=q*+q**=dU+l=dh+=dU+Pd=dhdP, (3.37)
где h=U+P — энтальпия (см. параграф 3.1.2).
По внешнему балансу теплоты и работы запишется:
Q*1,2=dU+l*=dh+*. (3.38)