
- •Конспект лекций
- •3.1. Термодинамика
- •3.1.1. Содержание и метод термодинамики
- •3.1.2. Основные понятия термодинамики
- •3.1.3. Газовые смеси
- •3.1.4. Законы идеальных газов
- •3.1.5. Первое начало термодинамики
- •3.1.5.1. Первое начало термодинамики как математическое выражение закона сохранения энергии
- •3.1.5.2. Первое начало термодинамики простого тела
- •3.1.6. Понятие теплоёмкости
- •3.1.7. Первое начало термодинамики для идеальных газов
- •3.1.7.1. Закон Майера
- •8314 Дж/(кмольк).
- •3.1.7.2. Принцип существования энтропии идеального газа
- •3.1.8. Термодинамические процессы
- •3.1.8.1. Классификация термодинамических процессов
- •3.1.8.2. Работа в термодинамических процессах
- •3.1.9. Круговые процессы (циклы)
- •3.1.9.1. Тепловые машины, понятие термического к.П.Д.,
- •3.1.9.2. Цикл Карно
- •3.1.10. Второе начало термодинамики
- •3.1.11. Термодинамические циклы двигателей внутреннего сгорания
- •3.1.11.1. Циклы поршневых двигателей внутреннего сгорания
- •3.1.11.2. Циклы газотурбинных установок
- •3.1.12. Типовые задачи к разделам курса «термодинамика»
- •3.1.12.1. Параметры, уравнение состояния идеального газа
- •3.1.12.2. Газовые смеси
- •3.1.12.3. Первое начало термодинамики
- •3.1.12.4. Процессы изменения состояния вещества
- •3.1.12.5. Термодинамические циклы
- •4.1.Теплопередача
- •4.1.1. Теплопередача, её предмет и метод, формы передачи теплоты
- •4.2. Теплопроводность
- •4.2.1. Температурное поле
- •4.2.2. Температурный градиент
- •4.2.3. Тепловой поток. Закон Фурье
- •4.2.4. Коэффициент теплопроводности
- •4.2.5. Дифференциальные уравнения теплопроводности
- •4.2.6. Условия однозначности для процессов теплопроводности
- •4.2.7. Отдельные задачи теплопроводности при стационарном режиме
- •4.3. Конвективный теплообмен
- •4.3.1. Основные понятия и определения
- •4.3.2. Теория размерностей
- •Размерности и показатели степени при конвективном
- •4.3.3. Теория подобия
- •4.3.4. Критериальные уравнения
- •4.3.5. Некоторые случаи теплообмена
- •4.3.6. Расчетные зависимости конвективного теплообмена
- •4.3.7. Теплообмен при естественной конвекции
- •4.3.8. Теплоотдача при вынужденном движении жидкости в трубах и каналах
- •4.3.9. Теплоотдача при поперечном обтекании труб
- •4.4. Тепловое излучение
- •4.4.1. Основные понятия и определения
- •4.4.2. Виды лучистых потоков
- •4.4.3. Законы теплового излучения
- •4.4.4. Особенности излучения паров и реальных газов
- •4.5. Теплопередача
- •4.5.1. Теплопередача между двумя теплоносителями через разделяющую их стенку
- •4.5.2. Оптимизация (регулирование) процесса теплопередачи
- •4.5.3. Теплопередача при переменных температурах (расчет теплообменных аппаратов)
Конспект лекций
Овладение тепловой энергией позволило человечеству совершить первую научно-техническую революцию и перейти в качественно новый этап своего развития — построить индустриальное общество. Без знания законов, управляющих переходом теплоты в другие формы энергии и распространением ее в пространстве, это было бы невозможно.
Первоначально термодинамика решала достаточно ограниченный круг задач, связанных с чисто практическими расчетами тепловых (в основном паровых) машин. Однако методы анализа процессов, основанные на двух фундаментальных законах природы — законе сохранения энергии и законе роста энтропии — оказались настолько эффективны, что термодинамика проникла во все сферы науки и техники. Это произошло усилиями многих выдающихся ученых: Н.-Л. С. Карно, В. Томсона (лорда Кельвина), М. Планка, Р. Майера, М. В. Ломоносова, Н. И. Белоконя и других.
Термодинамика изучает взаимные переходы различных видов энергии друг в друга, т. е. рисует энергетическую картину мира и тех сил, которые движут им. В термодинамике обычно применяют один из двух методологических подходов: статистический и феноменологический. При статистическом подходе рабочее тело (газ) рассматривается как совокупность большого числа микро частиц, характеристики которых, например энергия или скорость, могут быть описаны с помощью законов математической статистики. Эти характеристики для различного числа частиц будут различны, поэтому можно говорить о неких средних свойствах, описываемых с помощью нормального или иного распределения. При феноменологическом подходе микроструктура вещества вообще не учитывается. Поведение рабочего тела оценивают только по внешнему балансу, т.е. при подведении энергии извне наблюдают за внешними эффектами. В таком случае рабочее тело можно представить как «чёрный ящик», на вход которого поступает некий сигнал, а на выходе наблюдают ответную реакцию. Именно такой подход принят в технической термодинамике, что обусловило специфические особенности её применения в инженерной практике. Для оценки работы тепловых двигателей или холодильных машин можно не знать, состоит ли рабочее тело из молекул и атомов, или микроструктура вещества неизвестна. Второй раздел курса — теплопередача — описывает процессы обмена теплотой в трех основных ее формах: теплопроводность, конвекция, излучение. Как правило, три эти формы в технических процессах действуют совместно. Задача грамотного специалиста — выделить в каждом данном процессе преобладающую форму и провести теплотехнические расчёты по законам, описывающим именно эту форму теплообмена. При совместном действии двух или трёх форм теплообмена необходимо понимать взаимное внимание их друг на друга и учитывать это при анализе тепловых процессов.
Хорошее знание законов теплопередачи позволяет увеличить эффективность использования энергоресурсов, повысить культуру производства и снизить энергоёмкость производства.
Не только для каждого инженера, но и для любого грамотного человека знакомство с этими фундаментальными законами Природы является абсолютно необходимым.
Авторы выражают искреннюю благодарность Бахмат Марине Геннадьевне и Виктору Геннадьевичу за техническую помощь в подготовке работы к изданию.