
Намагничивание ферромагнитных материалов
По характеру магнитных свойств все вещества можно разделить на две группы:
ферромагнитные вещества; магнитная проницаемость которых велика. К ним принадлежат железо, сталь, чугун, никель, кобальт и некоторые сплавы (алюминия с никелем и др.);
немагнитные вещества, магнитная проницаемость которых незначительно отличается от магнитной проницаемости пустоты. К ним относятся алюминий, медь, олово, ртуть, серебро, дерево, вода и др.
Ферромагнитные материалы имеют очень важное значение в электротехнике и радиотехнике. Эти материалы (в основном сталь) благодаря большой магнитной проницаемости ; получили широкое применение в различных электромагнитах, электрических генераторах, электродвигателях, трансформаторах, электроизмерительных приборах, реле и т. д.
Зависимость между В и Н у ферромагнитных материалов обычно выражается графически в виде так называемой кривой намагничивания. Для построения кривой по горизонтальной оси обычно откладывают напряженность магнитного поля Н в а/м, а/см, а по вертикальной оси откладывают величину магнитной индукции В в вб/м2, вб/м2 или гауссах.
На рис. 82 приведены кривые намагничивания электротехнической стали, литой стали и чугуна. Величины напряженности магнитного поля для литой стали даны на нижней горизонтали, для электротехнической стали и чугуна — на верхней горизонтали. Из рассмотрения кривой намагничивания видно, что с увеличением напряженности Н магнитная индукция В сначала быстро возрастает, затем в месте изгиба кривой скорость роста В уменьшается и, наконец, за изгибом кривая незначительно поднимается вверх, переходя в прямую линию. Последний участок кривой характеризует состояние магнитного насыщения материала.
Из кривой намагничивания видно, что отношение
является
постоянной величиной; с увеличением H
и В магнитная проницаемость уменьшается.
Магнитная проницаемость ферромагнитных тел зависит также от химического состава металла, его предварительной термической и механической обработки, температуры металла. Кроме того,
магнитная проницаемость этих тел зависит от их формы и геометрических размеров.
Кривые намагничивания снимаются опытным путем отдельно для каждого материала и каждого сорта этого материала.
Классификация ферромагнитных материалов
Все ферромагнитные материалы по поведению в магнитном поле делятся на две группы.
Магнитомягкие – с большой магнитной проницаемостью μ и малой величиной коэрцитивной силы НК < 10 А/м. Они легко намагничиваются и размагничиваются. Обладают малыми потерями на гистерезис, т.е. узкой петлей гистерезиса.
Магнитные характеристики зависят от химической чистоты и степени искажения кристаллической структуры. Чем меньше примесей (С,Р, S, О, N), тем выше уровень характеристик материала, поэтому необходимо при производстве ферромагнетика их и оксиды удалять, и стараться не искажать кристаллическую структуру материала.
Магнитотвердые материалы – обладают большой НК > 0,5·МА/м и остаточной индукцией (ВО ≥ 0,1Т). Им соответствует широкая петля гистерезиса. Они с большим трудом намагничиваются, зато могут несколько лет сохранять магнитную энергию, т.е. служить источником постоянного магнитного поля. Поэтому из них изготовляются постоянные магниты.
По составу все магнитные материалы делятся на:
металлические;
неметаллические;
магнитодиэлектрики.
Металлические магнитные материалы - это чистые металлы (железо, кобальт, никель) и магнитные сплавы некоторых металлов.
К неметаллическим материалам относятся ферриты, получаемые из порошков оксидов железа и других металлов. Их прессуют и обжигают при 1300 – 1500 °С и они превращаются в твердые монолитные магнитные детали. Ферриты, как и металлические магнитные материалы, могут быть магнитомягкими и магнитотвердыми.
Магнитодиэлектрики – это композиционные материалы из 60 – 80 % порошка магнитного материала и 40 – 20 % органического диэлектрика. Ферриты и магнитодиэлектрики имеют большое значение удельного электрического сопротивления (ρ = 10 ÷ 108 Ом·м), Высокое сопротивление этих материалов обеспечивает низкие динамические потери энергии в переменных электромагнитных полях и позволяет широко использовать их в высокочастотной технике.