
- •1.1 Пример программы: родственные отношения.
- •1.2 Факты.
- •1.3 Вопросы.
- •1.4 Переменные.
- •1.5 Конъюнкция целей.
- •1.6 Правила.
- •1.7 Конъюнкция в правилах.
- •1.8 Переменные в теле правила.
- •1.9 Cтруктура пролог-программы.
- •2.1 Синтаксис пролога.
- •2.1.1 Константы.
- •2.1.2 Переменные.
- •2.1.3 Структуры.
- •2.1.4 Операторы - тоже функторы.
- •2.2 Арифметика.
- •2.3 Операции сравнения.
- •2.4 Сопоставление.
- •2.6 Примеры сопоставления структур.
- •3.1 Декларативная семантика Пролог-программ
- •3.2 Дизъюнкция целей
- •3.3 Процедурная семантика
- •3.3.1 Пример вычисления
- •3.3.2 Формальное описание процедуры вычисления целей.
- •3.4 Соотношение между процедурным и декларативным смыслом
- •4.1 Списки
- •4.1.1 Представление списка диаграммой.
- •4.1.2 Выделение головы и хвоста списка
- •4.1.3 Шаблоны списков.
- •4.1.4 Определения отношений через cons форму списка
- •4.1.4 Определения отношений через cons форму списка
- •4.2 Процедуры обработки списков
- •4.2.3 Применение append
- •4.2.5 Длина списка
- •4.3 Встроенные предикаты
- •4.3.1 Простые встроенные предикаты ввода-вывода.
- •4.3.2 Процедурный смысл встроенных предикатов ввода-вывода.
- •4.4 Ввод-вывод списков.
- •4.4.1 Ввод-вывод списка как терма.
- •4.4.2 Поэлементный ввод-вывод списка.
- •5.1 Отсечение.
- •5.1.1 Графическая иллюстрация действия cut.
- •5.1.2 Пример действия cut.
- •5.1.3 Применение cut при выборе альтернатив.
- •5.1.4 Формальное описание действия отсечения.
- •5.2 Применение отсечения.
- •5.2.2 Добавление элемента без дублирования.
- •5.2.3 Классификация.
- •5.2.4 Отсечение в численной рекурсии.
- •5.2.5 Замечания при использовании отсечения.
- •5.3 Сортировка списков.
- •5.3.1 Метод наивной сортировки.
- •5.3.2 Метод пузырька.
- •5.3.3 Mетод вставки.
- •5.3.4 Быстрая сортировка quick.
- •6.1 Отрицание как неудача. (not as failure)
- •6.2 Алгоритм поиска на Прологе. ( Логический подход к задаче о фермере, волке, козе и капусте.)
- •6.3 Чтение и запись информации с файлов.
- •6.3.1 Обработка входных потоков.
- •6.3.2 Обработка выходных потоков.
- •6.4 Обработка символов.
- •7.1 Встроенные предикаты
- •7.1.2 Проверка типа терма
- •7.2 Метапредикаты.(Встроенные предикаты обработки термов.)
- •7.2.1 Создание и декомпозиция термов.
- •7.2.2 Предикаты работы с базой данных
- •7.3 Поиск в лабиринте
- •7.4 Сравнительная характеристика языков программирования.
- •8.1. Операции (Операторы).
- •8.1.1 Приоритет оператора.
- •8.1.2. Тип оператора.
- •8.1.3 Объявление операций.
- •8.2. Поиск.
- •8.2. Поиск.
- •8.2.1 Поиск в Прологе.
- •8.2.2 Поиск в глубину.
- •8.2.3 Поиск в ширину.
- •8.2.4 Резюме Поиска.
- •9.1. Введение
- •9.2 Поиск с предпрочтением.
- •10.1. Постановка задачи
- •10.2. Пример грамматики
- •10.3. Пример разбора вручную.
- •10.4. Реализация грамматического разбора на Прологе.
- •Как должны выглядеть утверждения Пролога ?
- •Запоминание состояния в Прологе.
- •Аналогично для dcg проводится
- •11.1. Постановка задачи
- •Две емкости
- •11.2. Решение задачи
- •12.1. Постановка задачи
- •12.2. Решение
- •13.1. Введение
- •Метод "образовать и проверить"
- •13.2. Раскрашивание плоской карты
13.1. Введение
Одним из отличий вычислительной модели логического программирования от моделей обычного программирования является недетерминизм. Недетерминизм - это техническое понятие, используемое для сжатого определения абстрактных моделей вычислений. Однако недетерминизм не только мощная теоретическая идея, но и полезное средство описания и реализации алгоритмов.
Интуитивно ясно, что недетерминированная машина, перед которой возникло несколько альтернативных путей решения, осуществляет корректный выбор очередного действия. Подлинно недетерминированную машину реализовать нельзя, однако ее можно моделировать или аппроксимировать. В частности, Пролог-интерпритатор аппроксимирует недетерминированное поведение интерпретатора абстрактных логических программ с применением механизма последовательного поиска и возвратов. Однако тот факт, что детерминизм только "моделируется", но "реально не присутствует", для недетерминированного мышления во многих случаях не существенен, точно также как несущественны для символьного мышления детали обработки указателей в процессе унификации.
Метод "образовать и проверить"
Метод "образовать и проверить" - общий прием, используемый при проектировании алгоритмов и программ. Суть его состоит в том, что один процесс или программа генерирует множество предполагаемых решений задачи, а другой процесс или программа проверяет эти предполагаемые решения, пытаясь найти те из них, которые действительно являются решениями задачи.
Обычно программы, реализующие метод "образовать и проверить", конструировать проще, чем программы, в которых решение находится непосредственно, однако они менее эффективны. Стандартный прием оптимизации программ типа "образовать и проверить" заключается в стремлении погрузить программу проверки в программу генерации предполагаемых решений настолько глубоко, насколько это возможно. В пределе программа проверки полностью переплетается с программой генерации предполагаемых решений, которая начинает порождать только корректные решения.
Используя вычислительную модель Пролога, легко создавать логические программы, реализующие метод "образовать и проверить". Обычно такие программы содержат конъюнкцию двух целей, одна из которых действует как генератор предполагаемых решений, а вторая проверяет, являются ли эти решения приемлемыми:
find(X) generate(X), test (X).
Эта Пролог-программа действует подобно обычной процедурной программе, выполняющей генерацию вариантов и их проверку. Если при решении вопроса find(X)? Успешно выполняется цель generate(X) с выдачей некоторого X, то затем выполняется проверка test(X). Если проверка завершается отказом, то производится возвращение к цели generate, с помощью которой генерируется следующий элемент. Процесс продолжается итерационно до тех пор, пока при успешной проверке не будет найдено решение с характерными свойствами или генератор не исчерпает все альтернативные решения.
Однако программисту нет необходимости интересоваться циклом "образовать и проверить". Он Может рассматривать этот метод более абстрактно, как пример недетерминированного программирования. В этой недетерминированной программе генератор вносит о некотором элементе из области возможных решений, а затем просто проверяется, корректно ли данное предположение генератора.
В качестве генератора обычно используется программа для предиката member (программа 3.12), порождающая множество решений. На вопрос member(X,[a,b,c])? Будут даны в требуемой последовательности решения X = a, X = b, X = c. Таким образом, предикат member можно использовать в программах, реализующих метод "образовать и проверить" для недетерминированного выбора корректного элемента из некоторого списка.