
- •6 Методы изучения физических свойств пласта:
- •13 Понятие текстурно-структурной неоднородности
- •15 Принято все коллекторы нефти и газа разделять на терригенные и карбонатные.
- •1 8 Область применения гранулометрического анализа
- •Типы пустот в нефтегазовых пластах
- •По какому физическому принципу классифицируются поры по размерам?
- •Дайте понятие коэффициента пористости, виды коэффициентов пористости
- •24 Взаимосвязь и отличие коэффициентов общей, эффективной и динамической пористости, области их применения.
- •25 Понятие структуры порового пространства
- •Емкостные свойства нефтегазовых пластов, характеристика, взаимосвязь и область применения
- •28 Понятие проницаемости (характеристика и физический принцип измерения)
- •Физический смысл абсолютной проницаемости и принципы ее определения
- •Фазовая проницаемость, ее физический смысл и взаимосвязь с абсолютной проницаемостью
- •31 Относительные фазовые проницаемости пластов, совместное движение несмешивающихся флюидов в пористой среде и области их использования
- •Обычные и нормированные фазовые проницаемости, понятие нормированной насыщенности, ее физический смысл
- •Относительная фазовая проницаемость при трехфазной фильтрации и ее сопоставление с двухфазной фильтрацией
- •Диаграммы относительной фазовой проницаемости для трехфазной и двухфазной фильтрации. Сходство и различие.
- •Понятие удельной поверхности, разновидности удельной поверхности, их связь для различных горных пород
- •41. Первичные и вторичные напряжения, их связь с условиями залегания пластов и технологическими факторами.
- •42. Понятие нормальных и касательных напряжений, тензор напряжений.
- •43. Виды напряженного состояния нефтегазовых платов, тензор напряжений.
- •44. Виды деформаций, тензор деформаций.
- •45. Зависимость деформаций от напряжений, упругие и пластические деформации.
- •46. Деформационные и прочностные свойства нефтегазовых пластов.
- •47. Обобщенный закон Гука и область его существования.
- •48.Понятие истинных и эффективных напряжений в нефтегазовых пластах. Связь эффективных напряжений с внутрипластовым давлением.
- •49. Зависимость фильтрационных и емкостных свойств пласта от эффективных напряжений и области их использования.
- •50. Волновые процессы в нефтегазовых пластах, их общая характеристика и роль в нефтепромысловом деле.
- •51. Типы волн в нефтегазовых пластах
- •52. Явление поглощения упругих волн и коэффициенты, характеризующие поглощение.
- •53. Явления отражения волн и их преломления. Коэффициенты, характеризующие эти явления.
- •54. Природные и техногенные тепловые процессы в нефтегазовых пластах
- •55. Понятие теплоемкости пласта и коэффициенты, характеризующие теплоемкость
- •56. Тепловые свойства нефтегазового пласта
- •57. Теплопроводность и температуропроводность минералов и нефтегазовых пластов. Явление анизотропии теплопроводности
- •59 Типы залежей по состоянию углеводородных систем
- •60 Состав и классификация нефтей
- •Состав и классификация природных газов
- •Состав природных газовых смесей и параметры, характеризующие состав смеси
- •Идеальные и природные газы
- •Уравнение состояния идеальных газов, коэффициент сверхсжимаемости
- •66 Зависимость коэффициента сверхсжимаемости природного газа от приведенного давления и температуры
- •Плотность природного газа и стабильного углеводородного конденсата
- •Вязкость газа и газовых смесей
- •Закон Генри
- •76. Плотность и вязкость пластовой нефти.
- •77. Влияние термобарических условий на плотность пластовых нефтей
- •78.Диапазон значений вязкости колеблется в пределах (0.01-1000) мПа-с.
Вязкость газа и газовых смесей
Вязкость газов. Вязкость газа зависит от его состава, давления и температуры. Вязкость газов обусловлена обменом количеством движения между слоями газа, движущимися с разными относительно друг друга скоростями. Этот обмен происходит за счет перехода молекул из одного слоя в другой при их хаотическом движении. Так как крупные молекулы обладают меньшей длиной свободного пробега (вероятность их столкновения между собой относительно велика), то количество движения, переносимое ими из слоя в слой, меньше чем небольшими по размерам молекулами. Поэтому вязкость газов с увеличением их молекулярной массы как правило уменьшается.
С
повышением температуры увеличивается
скорость движения молекул и соответственно
количество движения, переносимое ими
из слоя в слой, поэтому при невысоких
давлениях вязкость газа с повышением
температуры возрастает. При высоких
давлениях, когда расстояния между
молекулами невелики, несколько меняется
передача количества движения из слоя
в слой. Она происходит главным образом
как и у жидкостей за счет временного
объединения молекул на границе слоев,
движущихся с разными скоростями.
Вероятность такого объединения с ростом
температуры уменьшается. Поэтому при
высоких давлениях с ростом температуры
вязкость газов снижается.
С увеличением давления вязкость газов возрастает: при низких давлениях незначительно и более интенсивно в области высоких давлений.
Вязкость газа определяют экспериментально, измеряя скорость течения его в капиллярах, скорость падения шарика в газе, затухание вращательных колебаний диска и другими методами. Изменение вязкости при различных давлениях и температурах можно определять расчетным путем и по графикам в зависимости от приведенных давления и температуры.
Закон Генри
Растворимость газов в жидкости. При больших давлениях растворимость газов в жидкости, в том числе и нефти подчиняется закону Генри. Согласно этому закону количество газа Vr, растворяющегося при данной температуре в объеме жидкости Vж, прямо пропорционально давлению газа р над поверхностью жидкости:
Vг = α∙р∙V (2.8)
где α — коэффициент растворимости газа 1/Па.
Коэффициент растворимости показывает какое количество газа растворяется в единице объема нефти при увеличении давления на единицу. Коэффициент растворимости газа в нефти — величина непостоянная. В зависимости от состава нефти и газа, температуры и других факторов он изменяется от 0,4∙10-5 до 5∙10-5 1/Па.
В наибольшей степени на растворимость газа в нефти влияет состав самого газа. Легкие газы (азот, метан) хуже растворимы в нефтях, чем газы с относительно большей молекулярной массой (этан, пропан, углекислый газ). В нефтях, содержащих большее количество легких углеводородов, растворимость газов выше по сравнению с тяжелыми нефтями. С ростом температуры растворимость газов в нефти уменьшается.
Из закона Генри следует, что чем больше коэффициент растворимости, тем при меньшем давлении в данном объеме нефти растворяется один и тот же объем газа. Поэтому у нефтей с большим содержанием метана, находящихся при высоких пластовых температурах, обычно высокие давления насыщения, а у тяжелых нефтей с малым содержанием метана при низких пластовых температурах — низкие. С количеством растворенного газа связано различие физических свойств нефти в пластовых условиях и на поверхности.
Растворимость газов в нефти и воде
См.выше
Изотермы растворимости природных газов в нефтях
Контактное и дифференциальное разгазирование нефти
2
типа кривых разгазирования:
1) контактный тип – весь выделившийся газ остается.
2) дифференциальный тип – газ отводится. Характерен для лабораторных условий.
Для диф. Разгазирования – количество газа больше, чем при контактном.
Кривая разгазирования:
Коэффициент разгазирования нефти
Коэффициентом разгазирования принято называть количество газа, выделившееся при снижении давления на единицу.
Кроме нефти, в пласте может находиться большое количество воды.
Содержание растворенного газа в воде выражается в мольных долях.
Давление насыщения нефти газом
Давление насыщения – это давление, при котором газ выделяется из нефти при его изотермическом расширении. Это важнейший параметр, определяющий параметр разработки.
На давление насыщения оказывает существенное влияние ультразвуковое воздействие. С повыщением температуры давление насыщения растет.
75. Коэффициент сжимаемости нефти. Объемный коэффициент.
Нефть обладает упругостью, которая измеряется коэффициентом сжимаемости (или объёмной упругости).
βn=-1/V(dV/dp)
Он составляет величину порядка (0.4-0.7) ГПа"1 (для нефтей, не содержащих растворённый газ). Лёгкие нефти, содержащие значительное количество растворённого газа, обладают повышенным коэффициентом сжимаемости (Р„ достигает 14 ГПа"1).
Когда нефть из пласта поднимается на поверхность, её состав меняется, меняется объём.
Объёмный коэффициент рассчитывается по формуле:
B = Vпл/Vдег
З
ависимость
объёмного коэффициента от давления
выглядит следующим образом:
в
Коэффициент усадки.
U = (B – 1)/B * 100% (изменение объёма нефти при подъёме на поверхность)
или
U = (B – 1) * 100% (изменение объёма нефти на поверхности)