
- •6 Методы изучения физических свойств пласта:
- •13 Понятие текстурно-структурной неоднородности
- •15 Принято все коллекторы нефти и газа разделять на терригенные и карбонатные.
- •1 8 Область применения гранулометрического анализа
- •Типы пустот в нефтегазовых пластах
- •По какому физическому принципу классифицируются поры по размерам?
- •Дайте понятие коэффициента пористости, виды коэффициентов пористости
- •24 Взаимосвязь и отличие коэффициентов общей, эффективной и динамической пористости, области их применения.
- •25 Понятие структуры порового пространства
- •Емкостные свойства нефтегазовых пластов, характеристика, взаимосвязь и область применения
- •28 Понятие проницаемости (характеристика и физический принцип измерения)
- •Физический смысл абсолютной проницаемости и принципы ее определения
- •Фазовая проницаемость, ее физический смысл и взаимосвязь с абсолютной проницаемостью
- •31 Относительные фазовые проницаемости пластов, совместное движение несмешивающихся флюидов в пористой среде и области их использования
- •Обычные и нормированные фазовые проницаемости, понятие нормированной насыщенности, ее физический смысл
- •Относительная фазовая проницаемость при трехфазной фильтрации и ее сопоставление с двухфазной фильтрацией
- •Диаграммы относительной фазовой проницаемости для трехфазной и двухфазной фильтрации. Сходство и различие.
- •Понятие удельной поверхности, разновидности удельной поверхности, их связь для различных горных пород
- •41. Первичные и вторичные напряжения, их связь с условиями залегания пластов и технологическими факторами.
- •42. Понятие нормальных и касательных напряжений, тензор напряжений.
- •43. Виды напряженного состояния нефтегазовых платов, тензор напряжений.
- •44. Виды деформаций, тензор деформаций.
- •45. Зависимость деформаций от напряжений, упругие и пластические деформации.
- •46. Деформационные и прочностные свойства нефтегазовых пластов.
- •47. Обобщенный закон Гука и область его существования.
- •48.Понятие истинных и эффективных напряжений в нефтегазовых пластах. Связь эффективных напряжений с внутрипластовым давлением.
- •49. Зависимость фильтрационных и емкостных свойств пласта от эффективных напряжений и области их использования.
- •50. Волновые процессы в нефтегазовых пластах, их общая характеристика и роль в нефтепромысловом деле.
- •51. Типы волн в нефтегазовых пластах
- •52. Явление поглощения упругих волн и коэффициенты, характеризующие поглощение.
- •53. Явления отражения волн и их преломления. Коэффициенты, характеризующие эти явления.
- •54. Природные и техногенные тепловые процессы в нефтегазовых пластах
- •55. Понятие теплоемкости пласта и коэффициенты, характеризующие теплоемкость
- •56. Тепловые свойства нефтегазового пласта
- •57. Теплопроводность и температуропроводность минералов и нефтегазовых пластов. Явление анизотропии теплопроводности
- •59 Типы залежей по состоянию углеводородных систем
- •60 Состав и классификация нефтей
- •Состав и классификация природных газов
- •Состав природных газовых смесей и параметры, характеризующие состав смеси
- •Идеальные и природные газы
- •Уравнение состояния идеальных газов, коэффициент сверхсжимаемости
- •66 Зависимость коэффициента сверхсжимаемости природного газа от приведенного давления и температуры
- •Плотность природного газа и стабильного углеводородного конденсата
- •Вязкость газа и газовых смесей
- •Закон Генри
- •76. Плотность и вязкость пластовой нефти.
- •77. Влияние термобарических условий на плотность пластовых нефтей
- •78.Диапазон значений вязкости колеблется в пределах (0.01-1000) мПа-с.
Состав природных газовых смесей и параметры, характеризующие состав смеси
Газ, добываемый вместе с нефтью, называется попутным или нефтяным. Газ, добываемый из чисто газовых месторождений, называется природным. Газы, добываемые из чисто газовых, газоконденсатных и нефтяных месторождений, по качественному составу близки между собой. Они включают, главным образом, углеводороды метанового ряда (алканы) и примеси неуглеводородных компонентов: азот, углекислый газ, сероводород, инертные газы (гелий, аргон, криптон).
Для характеристики газовых смесей используют те же показатели, что и для индивидуальных газов: молекулярную массу, плотность, относительную плотность.
Газы, добываемые из чисто газовых месторождений, состоят почти из одного метана, в них отсутствуют тяжелые фракции, способные перейти в жидкое состояние при нормальных условиях, и поэтому их называют сухими.
Газы из газоконденсатных месторождений содержат и более тяжелые компоненты, которые при нормальном давлении могут представлять собой жидкость, называемую газовым конденсатом.
Газы нефтяных месторождений содержат значительно меньше метана и большую долю пропан-бутановой фракции, которая при нормальной температуре и давлении выше 0,9 МПа находится в жидком состоянии и используется в качестве сжиженного газа. Жидкий газ при снижении давления испаряется, переходит в газообразное состояние, что делает удобным его транспортирование и использование.
Среди неуглеводородных компонентов природных газов особое место занимает углекислый газ и сероводород, являющиеся высокотоксичными и корродирующими веществами
Идеальные и природные газы
Газы - реальные и идеальные.
Идеальные газы – это когда пренебрегают взаимодействием молекул друг с другом.
PV = GRT
Р – абсолютное давление (Па), V – объем (м3), G – масса вещества (кг), Т – температура (К), R – универсальная газовая постоянная (кДж/Ккг).
(для
идеального газа).
z - степень отклонения реального газа от идеального, или коэффициент сжимаемости реального газа.
Нефтяные и природные газы имеют значительные отклонения от законов идеальных газов вследствие взаимодействия между собой молекул, которое возникает при сжатии реальных газов. Степень отклонения сжимаемости реальных газов от идеальных характеризуется коэффициентом сжимаемости z, показывающим отношение объема реального газа к объму идеального при одних и тех же условиях.
Уравнение состояния идеальных газов, коэффициент сверхсжимаемости
См.выше
66 Зависимость коэффициента сверхсжимаемости природного газа от приведенного давления и температуры
Приведенный параметр – это безразмерная величина, показывающая, во сколько раз параметры P,V, больше или меньше критических.
Плотность природного газа и стабильного углеводородного конденсата
Плотность газа. Чем больше в газе доля компонентов с высокой молекулярной массой, тем больше молекулярная масса газа, которая линейно связана с плотностью газа:
ρсм = Мсм/22,41
Обычно ρ находится в пределах 0,73 - 1 кг/м3. плотность индивидуальных компонентов углеводородных газов (и сероводорода), за исключением метана, больше 1.
Для характеристики плотности газа используют также ее отношение к плотности воздуха в тех же условиях (плотность воздуха при нормальных условиях составляет 1,293 кг/м3).
где
-
относительная плотность газа; ρсм, ρв
– плотность газа и воздуха соответственно.
Связь между плотностью газа и его
молекулярной массой, давлением и
температурой определяется законом
состояния газов, который можно представить
в виде: