
- •1. Система отсчета. Скорость.
- •2. Ускорение и его составляющие.
- •3. Угловая скорость и угловое ускорение.
- •4. Законы Ньютона.
- •5. Неинерциальные системы отсчета. Силы инерции.
- •6. Закон сохранения импульса.
- •7. Работа силы.
- •8. Консервативные силы. Потенциальная энергия.
- •9. Закон сохранения полной механической энергии.
- •10, 11. Удар абсолютно упругих тел. Удар абсолютно неупругих тел. Диссипация энергии.
- •12. Момент инерции.
- •13. Теорема Штейнера.
- •14. Кинетическая энергия вращающеюся тела.
- •15. Основной закон динамики вращательного движения.
- •16. Закон сохранения момента импульса.
- •17. Давление в жидкости и газе.
- •19. Уравнение Бернулли. Динамическое давление.
- •20. Вязкость. Движение тел в жидкостях и газах.
- •21. Постулаты специальной теории относительности.
- •22. Преобразования Лоренца.
- •23. Интервал между событиями и его инвариантность.
- •24. Релятивистское выражение для импульса.
- •25. Основной закон релятивистской динамики.
- •26. Закон взаимосвязи массы и энергии.
- •27. Уравнение состояния идеального газа.
- •28. Основное уравнение молекулярно-кинетической теории идеальных газов.
- •29. Закон Максвелла о распределении по скоростям теплового движения.
- •30. Барометрическая формула. Распределение Больцмана.
- •31. Среднее число столкновений и средняя длина свободного пробега молекул.
- •32. Явления переноса в газах.
- •33. Реальные газы. Уравнение Ван-дер-Ваальса.
- •34. Изотермы реальных газов и их сравнения с теоретическими.
- •35. Внутренняя энергия системы.
- •36. Работа газа при его расширении.
- •37. Первое начало термодинамики и его применение к изопроцессам.
- •38. Теплоемкость идеального газа.
- •39. Круговой процесс (цикл).
- •40. Цикл Карно.
- •41. Энтропия.
- •42. Второе начало термодинамики.
7. Работа силы.
Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.
Работой A, совершаемой постоянной силой F называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы F и перемещения S
Работа является скалярной величиной. Она может быть как положительной (0° ≤ α < 90°), так и отрицательной (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж).
Джоуль равен работе, совершаемой силой в 1 Н на перемещении 1 м в направлении действия силы.
Если
проекция
cилы
F
на направление перемещения
не
остается постоянной, работу следует
вычислять для малых перемещений Δsi
и суммировать результаты:
8. Консервативные силы. Потенциальная энергия.
Консервативными силами называются силы, работа которых не зависит от пути перехода тела или системы из начального положения в конечное.
Характерное свойство таких сил – работа на замкнутой траектории равна нулю:
К консервативным силам относятся: сила тяжести, гравитационная сила, сила упругости и другие силы.
Неконсервативными силами называются силы, работа которых зависит от пути перехода тела или системы из начального положения в конечное.
Работа этих сил на замкнутой траектории отлична от нуля. К неконсервативным силам относятся: сила трения, сила тяги и другие силы.
Потенциальная энергия системы – это функция механического состояния системы, зависящая от взаимного расположения всех тел системы и от их положения во внешнем потенциальном поле сил.
Убыль потенциальной энергии равна работе, которую совершают все консервативные силы (внутренние и внешние) при переходе системы из начального положения в конечное.
ЕП1
- ЕП2 = -DЕП = А12конс,
Из определения потенциальной энергии следует, что она может быть определена по консервативной силе, причём с точностью до произвольной постоянной, значение которой определяется выбором нулевого уровня потенциальной энергии.
Таким образом, потенциальная энергия системы в данном состоянии равна работе, совершаемой консервативной силой при переводе системы из данного состояния на нулевой уровень.
9. Закон сохранения полной механической энергии.
Рассмотрим свободное падение тела с некоторой высоты h относительно поверхности Земли (рис. 77). В точке A тело неподвижно, поэтому оно обладает только потенциальной энергией. В точке B на высоте h1 тело обладает и потенциальной энергией, и кинетической энергией, поскольку тело в этой точке имеет некоторую скорость v1. В момент касания поверхности Земли потенциальная энергия тела равна нулю, оно обладает только кинетической энергией.
Таким образом, во время падения тела его потенциальная энергия уменьшается, а кинетическая увеличивается.
Полной механической энергией E называют сумму потенциальной и кинетической энергий.
E = Eп + Eк.
Покажем, что полная механическая энергия системы тел сохраняется. Рассмотрим еще раз падение тела на поверхность Земли из точки A в точку C (см. рис. 78). Будем считать, что тело и Земля представляют собой замкнутую, систему тел, в которой действуют только консервативные силы, в данном случае сила тяжести.
В точке A полная механическая энергия тела равна его потенциальной энергии
E = Eп = mgh.
В точке B полная механическая энергия тела равна
E = Eп1 + Eк1.
Eп1 = mgh1, Eк1 = .
Тогда
E = mgh1 + .
Скорость тела v1 можно найти по формуле кинематики. Поскольку перемещение тела из точки A в точку B равно
s = h – h1 = , то = 2g(h – h1).
Подставив это выражение в формулу полной механической энергии, получим
E = mgh1 + mg(h – h1) = mgh.
Таким образом, в точке B
E = mgh.
В момент касания поверхности Земли (точка C) тело обладает только кинетической энергией, следовательно, его полная механическая энергия
E = Eк2
Скорость тела в этой точке можно найти по формуле = 2gh, учитывая, что начальная скорость тела равна нулю. После подстановки выражения для скорости в формулу полной механической энергии получим E = mgh.
Таким образом, мы получили, что в трех рассмотренных точках траектории полная механическая энергия тела равна одному и тому же значению: E = mgh. К такому же результату мы придем, рассмотрев другие точки траектории тела.
Полная механическая энергия замкнутой системы тел, в которой действуют только консервативные силы, остается неизменной при любых взаимодействиях тел системы.