- •1. Система отсчета. Скорость.
- •2. Ускорение и его составляющие.
- •3. Угловая скорость и угловое ускорение.
- •4. Законы Ньютона.
- •5. Неинерциальные системы отсчета. Силы инерции.
- •6. Закон сохранения импульса.
- •7. Работа силы.
- •8. Консервативные силы. Потенциальная энергия.
- •9. Закон сохранения полной механической энергии.
- •10, 11. Удар абсолютно упругих тел. Удар абсолютно неупругих тел. Диссипация энергии.
- •12. Момент инерции.
- •13. Теорема Штейнера.
- •14. Кинетическая энергия вращающеюся тела.
- •15. Основной закон динамики вращательного движения.
- •16. Закон сохранения момента импульса.
- •17. Давление в жидкости и газе.
- •19. Уравнение Бернулли. Динамическое давление.
- •20. Вязкость. Движение тел в жидкостях и газах.
- •21. Постулаты специальной теории относительности.
- •22. Преобразования Лоренца.
- •23. Интервал между событиями и его инвариантность.
- •24. Релятивистское выражение для импульса.
- •25. Основной закон релятивистской динамики.
- •26. Закон взаимосвязи массы и энергии.
- •27. Уравнение состояния идеального газа.
- •28. Основное уравнение молекулярно-кинетической теории идеальных газов.
- •29. Закон Максвелла о распределении по скоростям теплового движения.
- •30. Барометрическая формула. Распределение Больцмана.
- •31. Среднее число столкновений и средняя длина свободного пробега молекул.
- •32. Явления переноса в газах.
- •33. Реальные газы. Уравнение Ван-дер-Ваальса.
- •34. Изотермы реальных газов и их сравнения с теоретическими.
- •35. Внутренняя энергия системы.
- •36. Работа газа при его расширении.
- •37. Первое начало термодинамики и его применение к изопроцессам.
- •38. Теплоемкость идеального газа.
- •39. Круговой процесс (цикл).
- •40. Цикл Карно.
- •41. Энтропия.
- •42. Второе начало термодинамики.
4. Законы Ньютона.
I закон Ньютона
Существуют такие системы отсчета, которые называются инерциальными, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действие других сил скомпенсированно. Первый закон механики, или закон инерции, как его часто называют, бал, по существу, установлен еще Галилеем, но общую формулировку ему дал Ньютон.
Свободным телом – называют тело, на которое не действуют какие – либо другие тела или поля. При решении некоторых задач тело можно считать свободным, если внешние воздействия уравновешены.
II закон Ньютона
Ускорение тела прямопропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:
III закон Ньютона
Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.
5. Неинерциальные системы отсчета. Силы инерции.
Как известно, законы Ньютона выполняются только в инерциальных системах отсчета. Системы отсчета, которые движутся относительно инерциальной системы с ускорением, называются неинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже применять нельзя. Однако законы динамики можно применять и для них, если кроме сил, которые обусловленны воздействием тел друг на друга, ввести в рассмотрение понятие силы особого рода - так называемую силу инерции.
При учете сил инерции второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (учитывая и силы инерции). При этом силы инерции F(in) должны быть такими, чтобы вместе с силами F, обусловленными воздействием тел друг на друга, они сообщали телу ускорение а', каким оно обладает в неинерциальных системах отсчета, т. е.
Так как F=ma (a - ускорение тела в инерциальной системе отсчета), то
Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае следует учитывать следующие случаи возниконовения этих сил: 1) силы инерции при ускоренном поступательном движении системы отсчета; 2) силы инерции, которые действуют на тело, покоящееся во вращающейся системе отсчета; 3) силы инерции, которые действуют на тело, движущееся во вращающейся системе отсчета.
Рассмотрим эти случаи.
6. Закон сохранения импульса.
Импульс силы. Покой и движение тела относительны, скорость движения тела зависит от выбора системы отсчета. По второму закону Ньютона независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движения может происходить только при действии силы, т. е. в результате взаимодействия с другими телами.
Если
на тело массой m в течение времени t
действует сила и скорость его движения
изменяется от
до
,
то ускорение
движения тела равно
Импульс тела. Выражение показывает, что имеется физическая величина, одинаково изменяющаяся у всех тел под действием одинаковых сил, если время действия силы одинаково. Эта физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела или количеством движения.
Изменение импульса тела равно импульсу силы, вызывающей это изменение. Импульс тела является количественной характеристикой поступательного движения тел. За единицу импульса в СИ принят импульс тела массой 1 кг, движущегося поступательно со скоростью 1 м/с. Единицей импульса является килограмм-метр в секунду (кг*м/с).
Закон сохранения импульса. Выясним, как изменяются импульсы двух тел при их взаимодействии.
Обозначим скорости тел массами m1 и m2 до взаимодействия через V1 и V2 , а после взаимодействия — через V’1и V’2 .
По третьему закону Ньютона силы, действующие на тела при их взаимодействии, равны по модулю и противоположны по направлению; поэтому их можно обозначить F и -F .
Для
изменений импульсов тел при их
взаимодействии на основании равенства
можно записать
где t — время взаимодействия тел. Из этих выражений получаем
