- •1. Система отсчета. Скорость.
- •2. Ускорение и его составляющие.
- •3. Угловая скорость и угловое ускорение.
- •4. Законы Ньютона.
- •5. Неинерциальные системы отсчета. Силы инерции.
- •6. Закон сохранения импульса.
- •7. Работа силы.
- •8. Консервативные силы. Потенциальная энергия.
- •9. Закон сохранения полной механической энергии.
- •10, 11. Удар абсолютно упругих тел. Удар абсолютно неупругих тел. Диссипация энергии.
- •12. Момент инерции.
- •13. Теорема Штейнера.
- •14. Кинетическая энергия вращающеюся тела.
- •15. Основной закон динамики вращательного движения.
- •16. Закон сохранения момента импульса.
- •17. Давление в жидкости и газе.
- •19. Уравнение Бернулли. Динамическое давление.
- •20. Вязкость. Движение тел в жидкостях и газах.
- •21. Постулаты специальной теории относительности.
- •22. Преобразования Лоренца.
- •23. Интервал между событиями и его инвариантность.
- •24. Релятивистское выражение для импульса.
- •25. Основной закон релятивистской динамики.
- •26. Закон взаимосвязи массы и энергии.
- •27. Уравнение состояния идеального газа.
- •28. Основное уравнение молекулярно-кинетической теории идеальных газов.
- •29. Закон Максвелла о распределении по скоростям теплового движения.
- •30. Барометрическая формула. Распределение Больцмана.
- •31. Среднее число столкновений и средняя длина свободного пробега молекул.
- •32. Явления переноса в газах.
- •33. Реальные газы. Уравнение Ван-дер-Ваальса.
- •34. Изотермы реальных газов и их сравнения с теоретическими.
- •35. Внутренняя энергия системы.
- •36. Работа газа при его расширении.
- •37. Первое начало термодинамики и его применение к изопроцессам.
- •38. Теплоемкость идеального газа.
- •39. Круговой процесс (цикл).
- •40. Цикл Карно.
- •41. Энтропия.
- •42. Второе начало термодинамики.
37. Первое начало термодинамики и его применение к изопроцессам.
Q = ΔU + A
1. Изохорный
V = const => A = 0, Q = ΔU
Q = (i/2)*(m/M)*R* ΔT = (i/2) ΔpV
2.Изобарный
p = const => Q = ΔU+A
Q = (i/2)*(m/M)*R* ΔT + p ΔV = (i/2) pΔV + p ΔV
3.Изотермический
T = const => ΔU = 0, Q = A
Q = m/M*R* T*ln(V2/V1) = m/M*R* T*ln(p2/p1)
4.Адиабатный
Q = 0 => ΔU = -A = A’
38. Теплоемкость идеального газа.
Теплоёмкость тела характеризуется количеством теплоты, необходимой для нагревания этого тела на один градус
Размерность теплоемкости: [C] = Дж/К.
Однако, теплоёмкость – величина неопределённая, поэтому пользуются понятиями удельной и молярной теплоёмкости.
Удельная теплоёмкость (Суд) есть количество теплоты, необходимое для нагревания единицы массы вещества на 1 градус [Cуд] = Дж/К.
Для газов удобно пользоваться молярной теплоемкостью Cμ- количество теплоты, необходимое для нагревания 1 моля газа на 1 градус
[Cμ] = Дж/(моль×К).
Из п. 1.2 известно, что молярная масса – масса одного моля
где А – атомная масса; mед - атомная единица массы; NА - число Авогадро; моль μ – количество вещества, в котором содержится число молекул, равное числу атомов в 12 г изотопа углерода 12С.
Теплоёмкость термодинамической системы зависит от того, как изменяется состояние системы при нагревании.
Если газ нагревать при постоянном объёме, то всё подводимое тепло идёт на нагревание газа, то есть изменение его внутренней энергии. Теплоёмкость при этом обозначается СV.
СР – теплоемкость при постоянном давлении. Если нагревать газ при постоянном давлении Р в сосуде с поршнем, то поршень поднимется на некоторую высоту h, то есть газ совершит работу (рис. 4.2).
Следовательно,
проводимое тепло затрачивается и на
нагревание и на совершение работы.
Отсюда ясно, что
.
Итак, проводимое тепло и теплоёмкость зависят от того, каким путём осуществляется передача тепла. Значит, Q и С не являются функциями состояния.
Величины СР и СV оказываются связанными простыми соотношениями. Найдём их.
Пусть мы нагреваем один моль идеального газа при постоянном объёме(dA = 0). Тогда первое начало термодинамики запишем в виде:
т.е.
бесконечно малое приращение количества
теплоты
равно
приращению внутренней энергии dU.
Теплоемкость при постоянном объёме будет равна:
В общем случае
так как U может зависеть не только от температуры. Но в случае идеального газа справедлива формула (4.2.4).
Из
(4.2.4) следует, что
Внутренняя энергия идеального газа является только функцией температуры (и не зависит от V, Р и тому подобных), поэтому формула (4.2.5) справедлива для любого процесса.
Для произвольной идеальной массы газа:
При изобарическом процессе, кроме увеличения внутренней энергии, происходит совершение работы газом:
Из
основного уравнения молекулярно-кинетической
теории
.
При изобарическом процессе Р = const.
Следовательно, из (4.2.7) получим:
Это уравнение Майера для одного моля газа.
Из этого следует, что физический смысл универсальной газовой постоянной в том, что R – численно равна работе, совершаемой одним молем газа при нагревании на один градус в изобарическом процессе.
Используя это соотношение, Роберт Майер в 1842 г. вычислил механический эквивалент теплоты: 1 кал = 4,19 Дж.
Полезно знать формулу Майера для удельных теплоёмкостей
или
