- •1. Система отсчета. Скорость.
- •2. Ускорение и его составляющие.
- •3. Угловая скорость и угловое ускорение.
- •4. Законы Ньютона.
- •5. Неинерциальные системы отсчета. Силы инерции.
- •6. Закон сохранения импульса.
- •7. Работа силы.
- •8. Консервативные силы. Потенциальная энергия.
- •9. Закон сохранения полной механической энергии.
- •10, 11. Удар абсолютно упругих тел. Удар абсолютно неупругих тел. Диссипация энергии.
- •12. Момент инерции.
- •13. Теорема Штейнера.
- •14. Кинетическая энергия вращающеюся тела.
- •15. Основной закон динамики вращательного движения.
- •16. Закон сохранения момента импульса.
- •17. Давление в жидкости и газе.
- •19. Уравнение Бернулли. Динамическое давление.
- •20. Вязкость. Движение тел в жидкостях и газах.
- •21. Постулаты специальной теории относительности.
- •22. Преобразования Лоренца.
- •23. Интервал между событиями и его инвариантность.
- •24. Релятивистское выражение для импульса.
- •25. Основной закон релятивистской динамики.
- •26. Закон взаимосвязи массы и энергии.
- •27. Уравнение состояния идеального газа.
- •28. Основное уравнение молекулярно-кинетической теории идеальных газов.
- •29. Закон Максвелла о распределении по скоростям теплового движения.
- •30. Барометрическая формула. Распределение Больцмана.
- •31. Среднее число столкновений и средняя длина свободного пробега молекул.
- •32. Явления переноса в газах.
- •33. Реальные газы. Уравнение Ван-дер-Ваальса.
- •34. Изотермы реальных газов и их сравнения с теоретическими.
- •35. Внутренняя энергия системы.
- •36. Работа газа при его расширении.
- •37. Первое начало термодинамики и его применение к изопроцессам.
- •38. Теплоемкость идеального газа.
- •39. Круговой процесс (цикл).
- •40. Цикл Карно.
- •41. Энтропия.
- •42. Второе начало термодинамики.
34. Изотермы реальных газов и их сравнения с теоретическими.
Уравнение Ван-Дер-Ваальса - уравнение состояния реального газа. Предложено И. Д. Ван-дер-Ваальсом (J. D. van der Waals) в 1873. Для газа, содержащего N молекул, В. у. имеет вид:
где V -
объём, р -
давление, T -
абс. темп-pa газа, а и b -
постоянные, учитывающие притяжение и
отталкивание молекул. Член
наз.
внутр. давлением, постоянная b равна
учетверённому объёму молекулы газа,
если в качестве модели молекулы принять
слабо притягивающиеся упругие сферы.
В. у. количественно определяет свойства реальных газов лишь в небольшом интервале Т и р - в области относительно высоких Т и низких р, т. к. а и b являются ф-циями темп-ры. Однако В. у. качественно правильно описывает поведение газа и жидкости и при высокихр, а также особенности фазового перехода между ними. При низких давлениях и относительно высоких темп-pax оно переходит в ур-ние состояния идеального газа (Клапейрона уравнение ),а при высоких давлениях и низких темп-pax учитывает малую сжимаемость жидкостей. В. у. описывает, кроме того, критическое и ме-тастабильное состояния системы жидкость - пар.
На рис. приведены в координатах р - V изотермы, рассчитанные по В. у., являющемуся кубическим относительно V. Возможны 3 случая решения В. у.: 1) все три корня действительные и равны между собой; этот случай соответствует критич. состоянию (изотермаТкр; 2) все три корня действительные и различные - т. н. докритич. состояние (изотермы при T<Tкр); 3) два корня мнимые, не имеющие физ. смысла, один корень действительный; этот случай соответствует сверхкри-тич. состоянию (изотермы при T>Tкр). Изотермы при Т/Ткркачественно описывают поведение реальных газов. При докритич. темп-pax Т<Ткр поведение газа описывается изотермой-изобаройнасыщенного пара - прямой на диаграмме р - V, напр. прямой ас(рн.n.=const), а не S-образной кривой adec, соответствующей В. у.
Геом. место начальных и конечных точек "равновесия" а и с стабильной и метастабильной фаз (определяемое из условия равенства заштрихованных площадей) наз. бинодалью (кривая аКс). Кривая, соединяющая экстремальные точки типа d и е, наз. спинодалью (криваяdKe). Область, заключённая между бинодалью и спинодалью,- область неустойчивого, метастабиль-ного состояния системы. T. о., участки изотерм типа ad и ес относятся к метастабильному равновесию соответственно перегретой жидкости и системы жидкость+ газ, а также системы жидкость+газ и переохлаждённого газа. Участок dbe не имеет физ. смысла, т. к. на этом участке при росте р увеличивается и V, что невозможно.
При достаточно низких темп-pax участок adb опускается ниже изобары р=0. В этом случае имеющий физ. смысл участок ad попадёт в область отрицат. давлений, что соответствует неустойчивому состоянию растянутой жидкости.
Диаграмма состояния вещества в координатах p-V: T1<T2< T3 < Tкр < T4 < Т5,-изотермы, рассчитанные по В. у.; К - критическая точка, линии аКс - бинодаль, dKe - спинодаль; 1 - область жидкость + газ; 2 и 3 - области метастабильного состояния систем: перегретая жидкость и жидкость+ пар, переохлаждённый пар и жидкость+ пар. Заштрихованные площади adb и bес равны.
С
помощью В. у. можно получить критич.
параметры ркр, Vкp и Tкp. В
точке К изотермы
Ван-дер-Ваальса имеют как максимум, так
и точку перегиба, т. е.
.
Решение системы ур-ний Ван-дер-Ваальса
и двух приведённых выше имеет вид:
Несмотря
на то, что постоянная b имеет
подгоночный характер, размеры молекул,
полученные с помощью выражения
,
хорошо согласуются с полученными др.
методами.
В. у., в к-рое введены относит. величины T/Ткр, р/ркр, T/Tкр, наз. приведённым ур-нием состояния; оно имеет более широкое применение, чем В. у. Если в В. у. давление разложить по степеням плотности и сравнить с вириальним разложением, то постоянные а и bможно выразить через вириальные коэффициенты.
