
- •24.Классификация погрешностей измерений по форме выражения
- •25. Классификация погрешностей измерений по причине возникновения
- •26.Классификация погрешностей измерений по закономерностям проявления погрешностей.
- •26. Классификация погрешностей измерений по закономерностям проявления погрешностей
- •27. Температура. Классификация термометров
- •28. Термометры расширения. Жидкостные стеклянные
- •28. Термометры, основанные на расширении твердых тел
- •30. Газовые манометрические термометры
- •31. Термоэлектрические термометры. Конструкция. Принцип действия. Градуировки. Вторичные приборы
- •33.Способы компенсации изменения температуры свободных спаев. Мостовая схема автоматической компенсации.
- •38. Пирометры излучения
- •39. Определение понятия «давление» и соотношение между единицами давления Определение понятия «давление» и соотношение между единицами давления
- •40.Классификация приборов для измерения давления
- •4.1.1. Классификация приборов для измерения давления по принципу действия
- •41. Жидкостные манометры
- •43. Принцип действия манометра с трубчатой пружиной
- •45. Измерительные преобразователи давления
- •46. Оптоэлектронные и магнитные преобразователи давления
- •47. Пьезоэлектрические
- •48. Тензорезистивные преобразователи давления
- •49.Физический смысл понятий «расход» и «количество»
- •50.Основные принципы измерения расхода
- •51. Метод переменного перепада давления.
- •52.Расходомеры постоянного перепада давления.
- •56. Ультразвуковые расходомеры.
- •56. Методы измерения уровня жидкости, применяемые в химической промышленности
- •61.Ёмкостной уровнемер
- •Преобразователей сигналов, вычислительных устройств
51. Метод переменного перепада давления.
Является самым распространенным и изученным методом измерения расхода жидкости, пара и газа.
В измерительной технике сужающими устройствами являются диафрагмы, сопла и сопла Вентури.
Наиболее часто из них применяются диафрагмы, которые представляют собой тонкий диск, установленный в трубопроводе так, чтобы его отверстие было концентрично внутреннему контуру сечения трубопровода. Сужение потока начинается до диафрагмы. Затем на некотором расстоянии за ней благодаря действию сил инерции, поток сужается до минимального значения, а далее постепенно расширяется до полного сечения трубопровода. Перед диафрагмой и за ней образуются зоны с вихревым движением.
I
- I
- сечение потока до искажения формы.
II - II - сечение в месте максимального сужения.
Рп - потери давления на трение и завихрения.
Разность давлений Р1 - Р2 зависит от расхода среды, протекающей через трубопровод.
объемный
расход
,
массовый
расход
,
где Q – объемный расход вещества; Qм – массовый расход вещества; – коэффициент
расхода вещества; F0 – площадь отверстия диафрагмы; – плотность измеряемого вещества; Р1 – давление вещества непосредственно у стенки трубопровода до сужающего устройства; Р2 – давление вещества непосредственно у стенки трубопровода после сужающего устройства.
В случае использования сопла струя, протекающая через него, не отрывается от его профилированной части и поэтому Рп меньше.
Еще
меньше потери Рп
в сопле
Вентури.
Перепад давления измеряется дифманометрами. Комплект расходомера состоит из элементов:
1) сужающее устройство (Д);
2) импульсные трубки (Т);
3) дифманометр (ДМ).
В качестве дифманометров обычно используются преобразователи разности давлений типа "Сапфир".
52.Расходомеры постоянного перепада давления.
Наиболее распространенными приборами группы расходомеров постоянного перепада давления являются ротаметры (см. рис. 6.3), которые имеют ряд преимуществ перед расходометрами переменного перепада давления:
а) потери Рп незначительны и не зависят от расхода;
б
)
имеют большой диапазон измерения и
позволяют измерять малые расходы.
Принцип действия основан на измерении положения Н поплавка, вращающегося в расширяющейся кверху трубке под влиянием направленной вверх струи. Q - расход проходящего через трубку газа или жидкости,
- угол наклона стенок трубки.
Зависимость Н от Q нелинейна, но в начальном и среднем участках равномерность делений шкалы искажается в незначительной степени.
Отсутствие прямой зависимости между Q и Н требует индивидуальной градуировки каждого прибора.
Ротаметрические трубки обычно изготавливаются из стекла, на которое наносится шкала. Ротор также может быть изготовлен в виде шарика или диска.
53.Индукционные расходомеры.
Принцип действия электромагнитных расходомеров основан на измерении ЭДС, индуцируемой в потоке электропроводной жидкости под действием внешнего магнитного поля.
Принципиальная схема электромагнитного расходомера показана на рис. 76. Участок трубопровода 1, расположенный между 2 полюсами постоянного магнита перпендикулярно направлению силовых линий магнитного поля, изготовляется из немагнитного материала (фто--ропласта, эбонита и т. д.). В стенки трубопровода заделаны измерительные электроды 3.
П од действием магнитного поля ионы, находящиеся в жидкости, перемещаются и отдают свои заряды измерительным электродам 3, создавая в них ЭДС Е, пропорциональную скорости течения жидкости. К электродам 3 подключается измерительный прибор 2, шкала которого градуируется в единицах расхода. Величина этой ЭДС при постоянном магнитном поле определяется уравнением электромагнитной индукции
Е = Bdv,(6.6)
где В — магнитная индукция в зазоре между полюсами магнита; d — внутренний диаметр трубопровода; v — средняя скорость потока жидкости.
При однородном магнитном поле ЭДС пропорциональна объемному расходу.
Q ~ v
Существенные недостатки электромагнитных расходомеров с постоянным магнитом — возникновение на электродах ЭДС поляризации, гальванической ЭДС и трудности усиления малых ЭДС постоянного тока. Эти недостатки затрудняют или делают невозможным правильное измерение ЭДС, индуцируемой магнитным полем в движущейся жидкости.
Пои переменном магнитном поле электрохимические процессы оказывают меньшее влияние на показания прибора, чем при постоянном.
Электромагнитные расходомеры имеют ряд преимуществ перед рассмотренными выше. Прежде всего в них отсутствуют движущиеся части, они практически безынерционны, что очень важно при измерении быстроменяющихся расходов и при использовании их (расходомеров) в автоматических системах регулирования. На результат измерения не влияет присутствие в жидкости взвешенных частиц и пузырьков газа. Показания расходомера не зависят от свойств измеряемой жидкости (вязкости, плотности) и от характера потока (ламинарного, турбулентного).
Принцип действия ультразвуковых расходомеров жидкости и газа
Принцип действия ультразвукового расходомера (частота более 20 кГц) жидкости и газа основан на явлении смещения звукового колебания проходящего сквозь движущуюся жидкую среду.
Впервые акустическая технология измерения расхода жидкости и газа была предложена в 1935 г, а первый работающий прототип ультразвукового расходомера был представлен в 1948 г. Благодаря прорыву в электронике первые надежные ультразвуковые расходомеры появились в середине 1960-х годов.
Неоспоримыми достоинствами ультразвуковых расходомеров являются:
малое или полное отсутствие гидравлического сопротивления,
надежность (так как отсутствуют подвижные механические элементы),
высокая точность,
быстродействие,
помехозащищенность.
Все эти достоинства определили высокую распространенность данных расходомеров при измерении расхода жидкостей и газов.
Для измерения расхода жидкости и газа ультразвуком в основном используют два метода:
первый – это фазовый метод измерения расхода;
второй - это частотный метод измерения расхода.
54.Кориолисовый расходомер состоит из сенсора и преобразователя. Сенсор напрямую измеряет расход, плотность среды и температуру сенсорных трубок. Преобразователь конвертирует полученную с сенсора информацию в стандартные выходные сигналы.
Измеряемая среда, поступающая в сенсор, разделяется на равные половины, протекающие через каждую из сенсорных трубок. Движение задающей катушки приводит к тому, что трубки колеблются вверх вниз в противоположном направлении друг к другу.