
- •Математические модели
- •Введение
- •1.1. Состояние проблемы моделирования систем
- •1.2. Моделирование как метод научного познания
- •1.3. Использование моделирования при исследовании и проектировании сложных систем
- •1.4. Перспективы развития методов и средств моделирования систем в свете новых информационных технологий
- •Лекция № 2 классификация видов моделирования систем
- •3.1. Системный подход
- •3.2. Подходы к исследованию систем
- •3.3. Процесс моделирования на основе классического подхода
- •3.4. Процесс моделирования на основе системного подхода
- •3.5. Стадии разработки моделей
- •3.6. Характеристики моделей систем
- •3.7. Цель моделирования систем
- •3.8. Основные подходы к построению математических моделей систем
- •Лекция № 4 типовые схемы. Непрерывно-детерминированные модели
- •4.1. Типовые схемы
- •4.2. Непрерывно-детерминированные модели (d-схемы)
- •4.3. Основные соотношения
- •4.4. Возможные приложения
- •Лекция № 5 дискретно-детерминированные модели
- •5.1. Дискретно-детерминированные модели (f-схемы)
- •5.2. Основные соотношения
- •5.3. Возможные приложения
- •Пример: Для рассмотренного выше автомата Мура f2 запишем матрицу соединений и векторов выходов:
- •Лекция № 6 дискретно-стохастические модели
- •6.1. Дискретно-стохастические модели (р-схемы)
- •6.2. Основные соотношения
- •6.3. Возможные приложения
- •Лекция № 7 непрерывно-сТоХастические модели
- •7.1. Непрерывно-стохастические модели (q-схемы)
- •7.2. Основные соотношения
- •7.3. Возможные приложения
- •Пример. Допустим, что процесс обслуживания описывается следующей системой уравнений:
- •Лекция № 8 сетевые модели
- •8.1. Сетевые модели (n-схема)
- •8.2. Основные соотношения
- •8.3. Возможные приложения
- •Лекция № 9 комбинированные модели
- •9.1. Комбинированные модели (а-схемы)
- •9.2. Возможные приложения
- •Лекция № 10 формализация и алгоритмизация процессов
- •10.1. Формализация алгоритмизация процессов
- •10.2. Методика разработки и машинной реализации объекта
- •10.3. Методологические аспекты моделирования
- •10.4. Требования пользователя к модели
- •10.5. Этапы моделирования систем
- •Лекция № 11 построение концептуальных моделей систем и их формализация
- •11.1. Построение концептуальных моделей систем и их формализация
- •11.2. Переход от описания к блочной модели
- •11.3. Подэтапы первого этапа моделирования
- •11.3.1. Постановка задачи машинного моделирования системы
- •11.3.2 Анализ задачи моделирования системы
- •11.3.3. Определение требований к исходной информации об объекте моделирования и организация ее сбора
- •11.3.4. Выдвижение гипотез и принятие предположений
- •11.3.5. Определение параметров и переменных модели
- •11.3.6. Установление основного содержания модели
- •11.3.7. Обоснование критериев оценки эффективности системы
- •11.3.8. Определение процедур аппроксимации
- •11.3.9. Описание концептуальной модели системы
- •11.3.10. Проверка достоверности концептуальной модели
- •11.3.11. Составление технической документации по первому этапу
- •11.4. Алгоритмизация моделей систем и их машинная реализация
- •11.5. Принципы построения моделирующих алгоритмов
- •11.6. Формы представления моделирующих алгоритмов
- •11.7. Схемы алгоритмов, программ, данных и систем
- •11.8. Подэтапы второго этапа моделирования
- •11.8.1. Построение логической схемы модели
- •11.8.2. Получение математических соотношений
- •11.8.3. Проверка достоверности модели системы
- •11.8.4. Выбор инструментальных средств для моделирования
- •11.8.7. Верификация и проверка достоверности схемы программы
- •11.8.8. Проведение программирования модели
- •11.8.9. Проверка достоверности программы
- •11.9. Получение и интерпритация результатов моделирования систем
- •11.10. Подэтапы третьего этапа моделирования
- •11.10.3. Проведение рабочих расчетов
- •11.10.4. Анализ результатов моделирования системы
- •11.10.5. Представление результатов моделирования
- •11.10.6. Интерпретация результатов моделирования
- •11.10.8. Составление технической документации по третьему этапу
- •Лекция № 12 Линейное программирование
- •12.1. Общая и основная задачи линейного программирования
- •12.2. Графический метод решения задачи линейного программирования
- •Исходные данные задачи
- •12.3. Составление математической модели
- •Решение
- •12.4. Решение задач линейного программирования на эвм
- •12.5. Метод Гаусса с выбором главного элемента
- •12.6. Итерационные методы
- •Лекция № 13 нелинейное программирование
- •13.1. Постановка задачи нелинейного программирования
- •13.2. Геометрическая интерпретация задачи нелинейного программирования. Графический метод решения
- •13.3. Алгоритм решения знп графическим методом
- •Пример решения знп графическим методом
- •13.4. Метод множителей Лагранжа
- •13.5. Алгоритм метода множителей Лагранжа решения задачи
- •Лекция № 14 динамическое программирование
- •14.1. Постановка задачи динамического программирования
- •14.2. Составление математической модели динамического программирования
- •14.3. Этапы решения задачи динамического программирования
- •Оглавление
- •Математические модели
- •6 80021, Г. Хабаровск, ул. Серышева, 47
1.4. Перспективы развития методов и средств моделирования систем в свете новых информационных технологий
В последние годы основные достижения в различных областях науки и техники неразрывно связаны с процессом совершенствования ЭВМ. Сфера эксплуатации ЭВМ – бурно развивающаяся отрасль человеческой практики, стимулирующая развитие новых теоретических и прикладных направлений. Ресурсы современной информационно-вычислительной техники дают возможность ставить и решать математические задачи такой сложности, которые в недавнем прошлом казались нереализуемыми, например моделирование больших систем.
♦ Аналитические и имитационные методы. Исторически первым сложился аналитический подход к исследованию систем, когда ЭВМ использовалась в качестве вычислителя по аналитическим зависимостям. Анализ характеристик процессов функционирования больших систем с помощью только аналитических методов исследования наталкивается обычно на значительные трудности, приводящие к необходимости существенного упрощения моделей либо на этапе их построения, либо в процессе работы с моделью, что может привести к получению недостоверных результатов.
Поэтому в настоящее время наряду с построением аналитических моделей большое внимание уделяется задачам оценки характеристик больших систем на основе имитационных моделей, реализованных на современных ЭВМ с высоким быстродействием и большим объемом оперативной памяти. Причем перспективность имитационного моделирования как метода исследования характеристик процесса функционирования больших систем возрастает с повышением быстродействия и оперативной памяти ЭВМ, с развитием математического обеспечения, совершенствованием банков данных и периферийных устройств для организации диалоговых систем моделирования. Это, в свою очередь, способствует появлению новых «чисто машинных» методов решения задач исследования больших систем на основе организации имитационных экспериментов с их моделями. Причем ориентация на автоматизированные рабочие места на базе персональных ЭВМ для реализации экспериментов с имитационными моделями больших систем позволяет проводить не только анализ их характеристик, но и решать задачи структурного, алгоритмического и параметрического синтеза таких систем при заданных критериях оценки эффективности и ограничениях.
Достигнутые успехи в использовании средств вычислительной техники для целей моделирования часто создают иллюзию, что применение современной ЭВМ гарантирует возможность исследования системы любой сложности. При этом игнорируется тот факт, что в основу любой модели положено трудоемкое по затратам времени и материальных ресурсов предварительное изучение явлений, имеющих место в объекте-оригинале. И от того, насколько детально изучены реальные явления, насколько правильно проведена их формализация и алгоритмизация, зависит в конечном итоге успех моделирования конкретного объекта.
♦ Средства моделирования систем. Расширение возможностей моделирования различных классов больших систем неразрывно связано с совершенствованием средств вычислительной техники и техники связи. Перспективным направлением является создание для целей моделирования иерархических многомашинных вычислительных систем и сетей.
При создании больших систем их компоненты разрабатываются различными коллективами, которые используют средства моделирования при анализе и синтезе отдельных подсистем. При этом разработчикам необходимы оперативный доступ к программно-техническим средствам моделирования, а также оперативный обмен результатами моделирования отдельных взаимодействующих подсистем. Таким образом, появляется необходимость в создании диалоговых систем моделирования, для которых характерны следующие особенности: возможность одновременной работы многих пользователей, занятых разработкой одной или нескольких систем, доступ пользователей к программно-техническим ресурсам системы моделирования, включая, базы данных и знаний, пакеты прикладных программ моделирования, обеспечение диалогового режима работы с различными вычислительными машинами и устройствами, включая цифровые и аналоговые вычислительные машины, установки натурного и физического моделирования, элементы реальных систем и т. п., диспетчирование работ в системе моделирования и оказание различных услуг пользователям, включая обучение работе с диалоговой системой моделирования при обеспечении дружественного интерфейса.
В зависимости от специфики исследуемых объектов в ряде случаев эффективным оказывается моделирование на аналоговых вычислительных машинах (АВМ). При этом надо иметь в виду, что АВМ значительно уступают ЭВМ по точности и логическим возможностям, но по быстродействию, схемной простоте реализации, сопрягаемости с датчиками внешней информации АВМ превосходят ЭВМ или по крайней мере не уступают им.
Для сложных динамических объектов перспективным является моделирование на базе гибридных (аналого-цифровых) вычислительных комплексов. Такие комплексы реализуют преимущества цифрового и аналогового моделирования и позволяют наиболее эффективно использовать ресурсы ЭВМ и АВМ в составе единого комплекса. При использовании гибридных моделирующих комплексов упрощаются вопросы взаимодействия с датчиками, установленными на реальных объектах, что позволяет, в свою очередь, проводить комбинированное моделирование с использованием аналого-цифровой части модели и натурной части объекта. Такие гибридные моделирующие комплексы могут входить в состав многомашинного вычислительного комплекса, что еще больше расширяет его возможности с точки зрения моделируемых классов больших систем.
♦ Информационные технологии в обществе XXI века. Конец XX столетия ознаменовался интенсивным развитием и внедрением во все сферы жизни общества информатики. Это проявилось в интенсивном совершенствовании средств вычислительной техники и техники связи, в появлении новых и в дальнейшем развитии существующих информационных технологий, а также в реализации прикладных информационных систем. Достижения информатики заняли достойное место в организационном управлении, в промышленности, в проведении научных исследований и в автоматизированном проектировании. Информатизация охватила и социальную сферу: образование, науку, культуру, здравоохранение.
Переход страны к рыночной экономике потребовал развития соответствующего информационного обеспечения. Постепенно в России формировался рынок, в котором информация начинала выступать как ресурс, имеющий коммерческий характер. Наряду с производством систем и средств информатики большое место в настоящее время занимают и информационные услуги, на базе самоокупаемости интенсивно развивается отрасль связи. Телефония, радиовещание, телевидение работают с использованием различных типов каналов связи. Компьютерная техника прочно вошла в быт и используется как в образовании, так и в воспитании подрастающего поколения.
Домашний компьютер стал естественным для многих семей. В образовании значительная доля нагрузки в учебном процессе переносится на самостоятельные задания, выполняемые на домашнем компьютере. По своему качеству домашний компьютер в настоящее время часто оказывается намного выше компьютера, используемого в школе или вузе. Характерно, что в последние годы, покупая домашний компьютер, пользователь начал обращать внимание на место сборки, конфигурацию и перспективные возможности техники. Приобретается и значительное количество программных средств, в том числе записанных на CD-ROM, огромное число абонентов подключается к Интернет, значительное число пользователей работает с использованием сотовой и других сетей. Все это подтверждает, что процесс информатизации интенсифицируется, завершается этап неуправляемой информатизации. Управляемая составляющая, которая реализовывалась в основном в образовании, в промышленности и в административном управлении оказалась явно недостаточной из-за малых финансовых средств, но в целом современный уровень информатизации позволяет констатировать, что начало следующего века станет точкой перехода из века энергетики в век информатики, как это прогнозировал Норберт Винер.
Информатизация как процесс перехода от индустриального общества к информационному характеризуется резким перераспределением трудовых ресурсов в материальное производство и в сферу информации. Это соотношение изменяется от 3:1 до 1:3. В ряде стран суммарные расходы на компьютерную технику, телекоммуникации, электронику превысили расходы на энергетику, а поэтому, рассматривая проблему перспектив развития образования, нам необходимо исходить из будущего, поскольку только логически разработанная картина будущего может помочь познать настоящее. Проблема становления информационного общества и составляющая ее проблема информатизации образования должна рассматриваться в тесной взаимосвязи с проблемой будущего устойчивого развития цивилизации.
КОНТРОЛЬНЫЕ ВОПРОСЫ
Опишите состояние проблемы моделирования.
Какова роль моделирования в познании?
Дайте понятие адекватности моделирования.
Опишите моделирование при исследовании, проектировании сложных систем.
Опишите стадии микропроектирования и макропроектирования.
Каково целевое назначение моделирования на этапе внедрения и эксплуатации?
Каковы перспективы развития методов моделирования систем?