
- •Математические модели
- •Введение
- •1.1. Состояние проблемы моделирования систем
- •1.2. Моделирование как метод научного познания
- •1.3. Использование моделирования при исследовании и проектировании сложных систем
- •1.4. Перспективы развития методов и средств моделирования систем в свете новых информационных технологий
- •Лекция № 2 классификация видов моделирования систем
- •3.1. Системный подход
- •3.2. Подходы к исследованию систем
- •3.3. Процесс моделирования на основе классического подхода
- •3.4. Процесс моделирования на основе системного подхода
- •3.5. Стадии разработки моделей
- •3.6. Характеристики моделей систем
- •3.7. Цель моделирования систем
- •3.8. Основные подходы к построению математических моделей систем
- •Лекция № 4 типовые схемы. Непрерывно-детерминированные модели
- •4.1. Типовые схемы
- •4.2. Непрерывно-детерминированные модели (d-схемы)
- •4.3. Основные соотношения
- •4.4. Возможные приложения
- •Лекция № 5 дискретно-детерминированные модели
- •5.1. Дискретно-детерминированные модели (f-схемы)
- •5.2. Основные соотношения
- •5.3. Возможные приложения
- •Пример: Для рассмотренного выше автомата Мура f2 запишем матрицу соединений и векторов выходов:
- •Лекция № 6 дискретно-стохастические модели
- •6.1. Дискретно-стохастические модели (р-схемы)
- •6.2. Основные соотношения
- •6.3. Возможные приложения
- •Лекция № 7 непрерывно-сТоХастические модели
- •7.1. Непрерывно-стохастические модели (q-схемы)
- •7.2. Основные соотношения
- •7.3. Возможные приложения
- •Пример. Допустим, что процесс обслуживания описывается следующей системой уравнений:
- •Лекция № 8 сетевые модели
- •8.1. Сетевые модели (n-схема)
- •8.2. Основные соотношения
- •8.3. Возможные приложения
- •Лекция № 9 комбинированные модели
- •9.1. Комбинированные модели (а-схемы)
- •9.2. Возможные приложения
- •Лекция № 10 формализация и алгоритмизация процессов
- •10.1. Формализация алгоритмизация процессов
- •10.2. Методика разработки и машинной реализации объекта
- •10.3. Методологические аспекты моделирования
- •10.4. Требования пользователя к модели
- •10.5. Этапы моделирования систем
- •Лекция № 11 построение концептуальных моделей систем и их формализация
- •11.1. Построение концептуальных моделей систем и их формализация
- •11.2. Переход от описания к блочной модели
- •11.3. Подэтапы первого этапа моделирования
- •11.3.1. Постановка задачи машинного моделирования системы
- •11.3.2 Анализ задачи моделирования системы
- •11.3.3. Определение требований к исходной информации об объекте моделирования и организация ее сбора
- •11.3.4. Выдвижение гипотез и принятие предположений
- •11.3.5. Определение параметров и переменных модели
- •11.3.6. Установление основного содержания модели
- •11.3.7. Обоснование критериев оценки эффективности системы
- •11.3.8. Определение процедур аппроксимации
- •11.3.9. Описание концептуальной модели системы
- •11.3.10. Проверка достоверности концептуальной модели
- •11.3.11. Составление технической документации по первому этапу
- •11.4. Алгоритмизация моделей систем и их машинная реализация
- •11.5. Принципы построения моделирующих алгоритмов
- •11.6. Формы представления моделирующих алгоритмов
- •11.7. Схемы алгоритмов, программ, данных и систем
- •11.8. Подэтапы второго этапа моделирования
- •11.8.1. Построение логической схемы модели
- •11.8.2. Получение математических соотношений
- •11.8.3. Проверка достоверности модели системы
- •11.8.4. Выбор инструментальных средств для моделирования
- •11.8.7. Верификация и проверка достоверности схемы программы
- •11.8.8. Проведение программирования модели
- •11.8.9. Проверка достоверности программы
- •11.9. Получение и интерпритация результатов моделирования систем
- •11.10. Подэтапы третьего этапа моделирования
- •11.10.3. Проведение рабочих расчетов
- •11.10.4. Анализ результатов моделирования системы
- •11.10.5. Представление результатов моделирования
- •11.10.6. Интерпретация результатов моделирования
- •11.10.8. Составление технической документации по третьему этапу
- •Лекция № 12 Линейное программирование
- •12.1. Общая и основная задачи линейного программирования
- •12.2. Графический метод решения задачи линейного программирования
- •Исходные данные задачи
- •12.3. Составление математической модели
- •Решение
- •12.4. Решение задач линейного программирования на эвм
- •12.5. Метод Гаусса с выбором главного элемента
- •12.6. Итерационные методы
- •Лекция № 13 нелинейное программирование
- •13.1. Постановка задачи нелинейного программирования
- •13.2. Геометрическая интерпретация задачи нелинейного программирования. Графический метод решения
- •13.3. Алгоритм решения знп графическим методом
- •Пример решения знп графическим методом
- •13.4. Метод множителей Лагранжа
- •13.5. Алгоритм метода множителей Лагранжа решения задачи
- •Лекция № 14 динамическое программирование
- •14.1. Постановка задачи динамического программирования
- •14.2. Составление математической модели динамического программирования
- •14.3. Этапы решения задачи динамического программирования
- •Оглавление
- •Математические модели
- •6 80021, Г. Хабаровск, ул. Серышева, 47
11.10. Подэтапы третьего этапа моделирования
Прежде чем приступить к последнему, третьему, этапу моделирования системы, необходимо для его успешного проведения иметь четкий план действий, сводящийся к выполнению следующих основных подэтапов.
11.10.1. Планирование машинного эксперимента с моделью системы
Перед выполнением рабочих расчетов на ЭВМ должен быть составлен план проведения эксперимента с указанием комбинаций переменных и параметров, для которых должно проводиться моделирование системы S. Планирование машинного эксперимента призвано дать в итоге максимальный объем необходимой информации об объекте моделирования при минимальных затратах машинных ресурсов. При этом различают стратегическое и тактическое планирование машинного эксперимента. При стратегическом планировании эксперимента ставится задача построения оптимального плана эксперимента для достижения цели, поставленной перед моделированием (например, оптимизация структуры, алгоритмов и параметров системы S, исследуемой методом моделирования на ЭВМ). Тактическое планирование машинного эксперимента преследует частные цели оптимальной реализации каждого конкретного эксперимента из множества необходимых, заданных при стратегическом планировании (например, решение задачи выбора оптимальных правил остановки при статистическом моделировании системы S на ЭВМ). Для получения наиболее эффективного плана машинного эксперимента необходимо использовать статистические методы.
11.10.2. Определение требований к вычислительным средствам
Необходимо сформулировать требования по времени использования вычислительных средств, т. е. составить график работы на одной или нескольких ЭВМ, а также указать те внешние устройства ЭВМ, которые потребуются при моделировании. При этом также рационально оценить, исходя из требуемых ресурсов, возможность использования для реализации конкретной модели персональной ВМ или локальной вычислительной сети.
11.10.3. Проведение рабочих расчетов
После составления программы модели и плана проведения машинного эксперимента с моделью системы S можно приступить к рабочим расчетам на ЭВМ, которые обычно включают в себя:
а) подготовку наборов исходных данных для ввода в ЭВМ;
б) проверку исходных данных, подготовленных для ввода;
в) проведение расчетов на ЭВМ;
г) получение выходных данных, т. е. результатов моделирования.
Проведение машинного моделирования рационально выполнять в два этапа: контрольные, а затем рабочие расчеты. Причем контрольные расчеты выполняются для проверки машинной модели Мм и определения чувствительности результатов к изменению исходных, данных.
11.10.4. Анализ результатов моделирования системы
Чтобы эффективно проанализировать выходные данные, полученные в результате расчетов на ЭВМ, необходимо знать, что делать с результатами рабочих расчетов и как их интерпретировать. Эти задачи могут быть решены на основании предварительного анализа на двух первых этапах моделирования системы S. Планирование машинного эксперимента с моделью Мм позволяет вывести необходимое количество выходных данных и определить метод их анализа. При этом необходимо, чтобы на печать выдавались только те результаты, которые нужны для дальнейшего анализа. Также необходимо полнее использовать возможности ЭВМ с точки зрения обработки результатов моделирования и представления этих результатов в наиболее наглядном виде. Вычисление статистических характеристик перед выводом результатов из ЭВМ повышает эффективность применения машины и сводит к минимуму обработку выходной информации после ее вывода из ЭВМ.