
- •Математические модели
- •Введение
- •1.1. Состояние проблемы моделирования систем
- •1.2. Моделирование как метод научного познания
- •1.3. Использование моделирования при исследовании и проектировании сложных систем
- •1.4. Перспективы развития методов и средств моделирования систем в свете новых информационных технологий
- •Лекция № 2 классификация видов моделирования систем
- •3.1. Системный подход
- •3.2. Подходы к исследованию систем
- •3.3. Процесс моделирования на основе классического подхода
- •3.4. Процесс моделирования на основе системного подхода
- •3.5. Стадии разработки моделей
- •3.6. Характеристики моделей систем
- •3.7. Цель моделирования систем
- •3.8. Основные подходы к построению математических моделей систем
- •Лекция № 4 типовые схемы. Непрерывно-детерминированные модели
- •4.1. Типовые схемы
- •4.2. Непрерывно-детерминированные модели (d-схемы)
- •4.3. Основные соотношения
- •4.4. Возможные приложения
- •Лекция № 5 дискретно-детерминированные модели
- •5.1. Дискретно-детерминированные модели (f-схемы)
- •5.2. Основные соотношения
- •5.3. Возможные приложения
- •Пример: Для рассмотренного выше автомата Мура f2 запишем матрицу соединений и векторов выходов:
- •Лекция № 6 дискретно-стохастические модели
- •6.1. Дискретно-стохастические модели (р-схемы)
- •6.2. Основные соотношения
- •6.3. Возможные приложения
- •Лекция № 7 непрерывно-сТоХастические модели
- •7.1. Непрерывно-стохастические модели (q-схемы)
- •7.2. Основные соотношения
- •7.3. Возможные приложения
- •Пример. Допустим, что процесс обслуживания описывается следующей системой уравнений:
- •Лекция № 8 сетевые модели
- •8.1. Сетевые модели (n-схема)
- •8.2. Основные соотношения
- •8.3. Возможные приложения
- •Лекция № 9 комбинированные модели
- •9.1. Комбинированные модели (а-схемы)
- •9.2. Возможные приложения
- •Лекция № 10 формализация и алгоритмизация процессов
- •10.1. Формализация алгоритмизация процессов
- •10.2. Методика разработки и машинной реализации объекта
- •10.3. Методологические аспекты моделирования
- •10.4. Требования пользователя к модели
- •10.5. Этапы моделирования систем
- •Лекция № 11 построение концептуальных моделей систем и их формализация
- •11.1. Построение концептуальных моделей систем и их формализация
- •11.2. Переход от описания к блочной модели
- •11.3. Подэтапы первого этапа моделирования
- •11.3.1. Постановка задачи машинного моделирования системы
- •11.3.2 Анализ задачи моделирования системы
- •11.3.3. Определение требований к исходной информации об объекте моделирования и организация ее сбора
- •11.3.4. Выдвижение гипотез и принятие предположений
- •11.3.5. Определение параметров и переменных модели
- •11.3.6. Установление основного содержания модели
- •11.3.7. Обоснование критериев оценки эффективности системы
- •11.3.8. Определение процедур аппроксимации
- •11.3.9. Описание концептуальной модели системы
- •11.3.10. Проверка достоверности концептуальной модели
- •11.3.11. Составление технической документации по первому этапу
- •11.4. Алгоритмизация моделей систем и их машинная реализация
- •11.5. Принципы построения моделирующих алгоритмов
- •11.6. Формы представления моделирующих алгоритмов
- •11.7. Схемы алгоритмов, программ, данных и систем
- •11.8. Подэтапы второго этапа моделирования
- •11.8.1. Построение логической схемы модели
- •11.8.2. Получение математических соотношений
- •11.8.3. Проверка достоверности модели системы
- •11.8.4. Выбор инструментальных средств для моделирования
- •11.8.7. Верификация и проверка достоверности схемы программы
- •11.8.8. Проведение программирования модели
- •11.8.9. Проверка достоверности программы
- •11.9. Получение и интерпритация результатов моделирования систем
- •11.10. Подэтапы третьего этапа моделирования
- •11.10.3. Проведение рабочих расчетов
- •11.10.4. Анализ результатов моделирования системы
- •11.10.5. Представление результатов моделирования
- •11.10.6. Интерпретация результатов моделирования
- •11.10.8. Составление технической документации по третьему этапу
- •Лекция № 12 Линейное программирование
- •12.1. Общая и основная задачи линейного программирования
- •12.2. Графический метод решения задачи линейного программирования
- •Исходные данные задачи
- •12.3. Составление математической модели
- •Решение
- •12.4. Решение задач линейного программирования на эвм
- •12.5. Метод Гаусса с выбором главного элемента
- •12.6. Итерационные методы
- •Лекция № 13 нелинейное программирование
- •13.1. Постановка задачи нелинейного программирования
- •13.2. Геометрическая интерпретация задачи нелинейного программирования. Графический метод решения
- •13.3. Алгоритм решения знп графическим методом
- •Пример решения знп графическим методом
- •13.4. Метод множителей Лагранжа
- •13.5. Алгоритм метода множителей Лагранжа решения задачи
- •Лекция № 14 динамическое программирование
- •14.1. Постановка задачи динамического программирования
- •14.2. Составление математической модели динамического программирования
- •14.3. Этапы решения задачи динамического программирования
- •Оглавление
- •Математические модели
- •6 80021, Г. Хабаровск, ул. Серышева, 47
10.4. Требования пользователя к модели
Сформулируем основные требования, предъявляемые к модели М процесса функционирования системы S.
Полнота модели должна предоставлять пользователю возможность получения необходимого набора оценок характеристик системы с требуемой точностью и достоверностью.
Гибкость модели должна давать возможность воспроизведения различных ситуаций при варьировании структуры, алгоритмов и параметров системы.
3. Длительность разработки и реализации модели большой системы должна быть по возможности минимальной при учете ограничений на имеющиеся ресурсы.
4. Структура модели должна быть блочной, т. е. допускать возможность замены, добавления и исключения некоторых частей без переделки всей модели.
5. Информационное обеспечение должно предоставлять возможность эффективной работы модели с базой данных систем определенного класса.
6. Программные и технические средства должны обеспечивать эффективную (по быстродействию и памяти) машинную реализацию модели и удобное общение с ней пользователя.
7. Должно быть реализовано проведение целенаправленных (планируемых) машинных экспериментов с моделью системы с использованием аналитико-имитационного подхода при наличии ограниченных вычислительных ресурсов.
С учетом этих требований рассмотрим основные положения которые справедливы при моделировании на ЭВМ систем S, а также их подсистем и элементов. При машинном моделировании системы S характеристики процесса ее функционирования определяются на основе модели М, построенной исходя из имеющейся исходной информации об объекте моделирования. При получении новой информации об объекте его модель пересматривается и уточняется с учетом новой информации, т. е. процесс моделирования, включая разработку и машинную реализацию модели, является итерационным. Этот итерационный процесс продолжается до тех пор, пока не будет получена модель М, которую можно считать адекватной в рамках решения поставленной задачи исследования и проектирования системы S.
Моделирование систем с помощью ЭВМ можно использовать в следующих случаях :
а) для исследования системы S до того, как она спроектирована, с целью определения чувствительности характеристики к изменениям структуры, алгоритмов и параметров объекта моделирования и внешней среды;
б) на этапе проектирования системы S для анализа и синтеза различных вариантов системы и выбора среди конкурирующих такого варианта, который удовлетворял бы заданному критерию оценки эффективности системы при принятых ограничениях;
в) после завершения проектирования и внедрения системы, т. е. при ее эксплуатации, для получения информации, дополняющей результаты натурных испытаний (эксплуатации) реальной системы, и для получения прогнозов эволюции (развития) системы во времени.
Существуют общие положения, применяемые ко всем перечисленным случаям машинного моделирования. Даже в тех случаях, когда конкретные способы моделирования отличаются друг от друга и имеются различные модификации моделей, например в области машинной реализации моделирующих алгоритмов с использованием конкретных программно-технических средств, в практике моделирования систем можно сформулировать общие принципы, которые могут быть положены в основу методологии машинного моделирования.