
- •Математические модели
- •Введение
- •1.1. Состояние проблемы моделирования систем
- •1.2. Моделирование как метод научного познания
- •1.3. Использование моделирования при исследовании и проектировании сложных систем
- •1.4. Перспективы развития методов и средств моделирования систем в свете новых информационных технологий
- •Лекция № 2 классификация видов моделирования систем
- •3.1. Системный подход
- •3.2. Подходы к исследованию систем
- •3.3. Процесс моделирования на основе классического подхода
- •3.4. Процесс моделирования на основе системного подхода
- •3.5. Стадии разработки моделей
- •3.6. Характеристики моделей систем
- •3.7. Цель моделирования систем
- •3.8. Основные подходы к построению математических моделей систем
- •Лекция № 4 типовые схемы. Непрерывно-детерминированные модели
- •4.1. Типовые схемы
- •4.2. Непрерывно-детерминированные модели (d-схемы)
- •4.3. Основные соотношения
- •4.4. Возможные приложения
- •Лекция № 5 дискретно-детерминированные модели
- •5.1. Дискретно-детерминированные модели (f-схемы)
- •5.2. Основные соотношения
- •5.3. Возможные приложения
- •Пример: Для рассмотренного выше автомата Мура f2 запишем матрицу соединений и векторов выходов:
- •Лекция № 6 дискретно-стохастические модели
- •6.1. Дискретно-стохастические модели (р-схемы)
- •6.2. Основные соотношения
- •6.3. Возможные приложения
- •Лекция № 7 непрерывно-сТоХастические модели
- •7.1. Непрерывно-стохастические модели (q-схемы)
- •7.2. Основные соотношения
- •7.3. Возможные приложения
- •Пример. Допустим, что процесс обслуживания описывается следующей системой уравнений:
- •Лекция № 8 сетевые модели
- •8.1. Сетевые модели (n-схема)
- •8.2. Основные соотношения
- •8.3. Возможные приложения
- •Лекция № 9 комбинированные модели
- •9.1. Комбинированные модели (а-схемы)
- •9.2. Возможные приложения
- •Лекция № 10 формализация и алгоритмизация процессов
- •10.1. Формализация алгоритмизация процессов
- •10.2. Методика разработки и машинной реализации объекта
- •10.3. Методологические аспекты моделирования
- •10.4. Требования пользователя к модели
- •10.5. Этапы моделирования систем
- •Лекция № 11 построение концептуальных моделей систем и их формализация
- •11.1. Построение концептуальных моделей систем и их формализация
- •11.2. Переход от описания к блочной модели
- •11.3. Подэтапы первого этапа моделирования
- •11.3.1. Постановка задачи машинного моделирования системы
- •11.3.2 Анализ задачи моделирования системы
- •11.3.3. Определение требований к исходной информации об объекте моделирования и организация ее сбора
- •11.3.4. Выдвижение гипотез и принятие предположений
- •11.3.5. Определение параметров и переменных модели
- •11.3.6. Установление основного содержания модели
- •11.3.7. Обоснование критериев оценки эффективности системы
- •11.3.8. Определение процедур аппроксимации
- •11.3.9. Описание концептуальной модели системы
- •11.3.10. Проверка достоверности концептуальной модели
- •11.3.11. Составление технической документации по первому этапу
- •11.4. Алгоритмизация моделей систем и их машинная реализация
- •11.5. Принципы построения моделирующих алгоритмов
- •11.6. Формы представления моделирующих алгоритмов
- •11.7. Схемы алгоритмов, программ, данных и систем
- •11.8. Подэтапы второго этапа моделирования
- •11.8.1. Построение логической схемы модели
- •11.8.2. Получение математических соотношений
- •11.8.3. Проверка достоверности модели системы
- •11.8.4. Выбор инструментальных средств для моделирования
- •11.8.7. Верификация и проверка достоверности схемы программы
- •11.8.8. Проведение программирования модели
- •11.8.9. Проверка достоверности программы
- •11.9. Получение и интерпритация результатов моделирования систем
- •11.10. Подэтапы третьего этапа моделирования
- •11.10.3. Проведение рабочих расчетов
- •11.10.4. Анализ результатов моделирования системы
- •11.10.5. Представление результатов моделирования
- •11.10.6. Интерпретация результатов моделирования
- •11.10.8. Составление технической документации по третьему этапу
- •Лекция № 12 Линейное программирование
- •12.1. Общая и основная задачи линейного программирования
- •12.2. Графический метод решения задачи линейного программирования
- •Исходные данные задачи
- •12.3. Составление математической модели
- •Решение
- •12.4. Решение задач линейного программирования на эвм
- •12.5. Метод Гаусса с выбором главного элемента
- •12.6. Итерационные методы
- •Лекция № 13 нелинейное программирование
- •13.1. Постановка задачи нелинейного программирования
- •13.2. Геометрическая интерпретация задачи нелинейного программирования. Графический метод решения
- •13.3. Алгоритм решения знп графическим методом
- •Пример решения знп графическим методом
- •13.4. Метод множителей Лагранжа
- •13.5. Алгоритм метода множителей Лагранжа решения задачи
- •Лекция № 14 динамическое программирование
- •14.1. Постановка задачи динамического программирования
- •14.2. Составление математической модели динамического программирования
- •14.3. Этапы решения задачи динамического программирования
- •Оглавление
- •Математические модели
- •6 80021, Г. Хабаровск, ул. Серышева, 47
1.1. Состояние проблемы моделирования систем
Моделирование (в широком смысле) является основным способом исследования во всех областях с помощью научно обоснованного метода оценок характеристик сложных систем, используемого для принятия решений в различных сферах инженерной деятельности. Существующие и проектируемые системы эффективно исследовать с помощью математических моделей (аналитических и имитационных), реализуемых на современных ЭВМ, которые выступают в качестве инструмента экспериментатора с моделью системы.
1.2. Моделирование как метод научного познания
В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Особенно это относится к сфере управления различными системами, где основными являются процессы принятия решений на основе получаемой информации. Остановимся на философских аспектах моделирования, а точнее, на общей теории моделирования.
♦ Методологическая основа моделирования. Все то, на что направлена человеческая деятельность, называется объектом (лат. objection предмет). Выработка методологии направлена на упорядочение получения и обработки информации об объектах, которые существуют вне нашего сознания и взаимодействуют между собой и внешней средой.
В научных исследованиях большую роль играют гипотезы, т. е. определенные предсказания, основывающиеся на небольшом количестве опытных данных, наблюдений, догадок. Быстрая и полная проверка выдвигаемых гипотез может быть проведена в ходе специально поставленного эксперимента. При формулировании и проверке правильности гипотез большое значение в качестве метода суждения имеет аналогия.
Аналогией называют суждение о каком-либо частном сходстве двух объектов, причем такое сходство может быть существенным и несущественным. Необходимо отметить, что понятия существенности и несущественности сходства или различия объектов условны и относительны. Существенность сходства (различия) зависит от уровня абстрагирования и в общем случае определяется конечной целью проводимого исследования. Современная научная гипотеза создается, как правило, по аналогии с проверенными на практике научными положениями. Таким образом, аналогия связывает гипотезу с экспериментом.
Гипотезы и аналогии, отражающие реальный, объективно существующий мир, должны обладать наглядностью или сводиться к удобным для исследования логическим схемам; такие логические схемы, упрощающие рассуждения и логические построения или позволяющие проводить эксперименты, уточняющие природу явлений, называются моделями. Другими словами, модель (лат. modulus мера) – это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.
♦ Определение моделирования. Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием. Таким образом, моделирование может быть определено как представление объекта моделью для получения информации об этом объекте путем проведения экспериментов с его моделью. Теория замещения одних объектов (оригиналов) другими объектами (моделями) и исследования свойств объектов на их моделях называется теорией моделирования .
Определяя гносеологическую роль теории моделирования, т. е. ее значение в процессе познания, необходимо прежде всего отвлечься от имеющегося в науке и технике многообразия моделей и выделить то общее, что присуще моделям различных по своей природе объектов реального мира. Это общее заключается в наличии некоторой структуры (статической или динамической, материальной или мысленной), которая подобна структуре данного объекта. В процессе изучения модель выступает в роли относительного самостоятельного квазиобъекта, позволяющего получить при исследовании некоторые знания о самом объекте.
Если результаты моделирования подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах, то говорят, что модель адекватна объекту. При этом адекватность модели зависит от цели моделирования и принятых критериев.
Обобщенное моделирование можно определить как метод опосредованного познания, при котором изучаемый объект-оригинал находится в некотором соответствии с другим объектом-моделью, причем модель способна в том или ином отношении замещать оригинал на некоторых стадиях познавательного процесса. Стадии познания, на которых происходит такая замена, а также формы соответствия модели и оригинала могут быть различными:
1) моделирование как познавательный процесс, содержащий переработку информации, поступающей из внешней среды о происходящих в ней явлениях, в результате чего в сознании появляются образы, соответствующие объектам;
2) моделирование, заключающееся в построении некоторой системы-модели (второй системы), связанной определенными соотношениями подобия с системой-оригиналом (первой системой), причем в этом случае отображение одной системы в другой является средством выявления зависимостей между двумя системами, отраженными в соотношениях подобия, а не результатом непосредственного изучения поступающей информации.
Следует отметить, что с точки зрения философии моделирование — эффективное средство познания природы. Процесс моделирования предполагает наличие объекта исследования; исследователя, перед которым поставлена конкретная задача; модели, создаваемой для получения информации об объекте и необходимой для решения поставленной задачи. Причем по отношению к модели исследователь является, по сути дела, экспериментатором, только в данном случае эксперимент проводится не с реальным объектом, а с его моделью. Такой эксперимент для инженера есть инструмент непосредственного решения организационно-технических задач.
Надо иметь в виду, что любой эксперимент может иметь существенное значение в конкретной области науки только при специальной его обработке и обобщении. Единичный эксперимент никогда не может быть решающим для подтверждения гипотезы, проверки теории. Поэтому инженеры (исследователи и практики) должны быть знакомы с элементами современной методологии теории познания и, в частности, не должны забывать основного положения материалистической философии, что именно экспериментальное исследование, опыт, практика являются критерием истины.