
- •Математические модели
- •Введение
- •1.1. Состояние проблемы моделирования систем
- •1.2. Моделирование как метод научного познания
- •1.3. Использование моделирования при исследовании и проектировании сложных систем
- •1.4. Перспективы развития методов и средств моделирования систем в свете новых информационных технологий
- •Лекция № 2 классификация видов моделирования систем
- •3.1. Системный подход
- •3.2. Подходы к исследованию систем
- •3.3. Процесс моделирования на основе классического подхода
- •3.4. Процесс моделирования на основе системного подхода
- •3.5. Стадии разработки моделей
- •3.6. Характеристики моделей систем
- •3.7. Цель моделирования систем
- •3.8. Основные подходы к построению математических моделей систем
- •Лекция № 4 типовые схемы. Непрерывно-детерминированные модели
- •4.1. Типовые схемы
- •4.2. Непрерывно-детерминированные модели (d-схемы)
- •4.3. Основные соотношения
- •4.4. Возможные приложения
- •Лекция № 5 дискретно-детерминированные модели
- •5.1. Дискретно-детерминированные модели (f-схемы)
- •5.2. Основные соотношения
- •5.3. Возможные приложения
- •Пример: Для рассмотренного выше автомата Мура f2 запишем матрицу соединений и векторов выходов:
- •Лекция № 6 дискретно-стохастические модели
- •6.1. Дискретно-стохастические модели (р-схемы)
- •6.2. Основные соотношения
- •6.3. Возможные приложения
- •Лекция № 7 непрерывно-сТоХастические модели
- •7.1. Непрерывно-стохастические модели (q-схемы)
- •7.2. Основные соотношения
- •7.3. Возможные приложения
- •Пример. Допустим, что процесс обслуживания описывается следующей системой уравнений:
- •Лекция № 8 сетевые модели
- •8.1. Сетевые модели (n-схема)
- •8.2. Основные соотношения
- •8.3. Возможные приложения
- •Лекция № 9 комбинированные модели
- •9.1. Комбинированные модели (а-схемы)
- •9.2. Возможные приложения
- •Лекция № 10 формализация и алгоритмизация процессов
- •10.1. Формализация алгоритмизация процессов
- •10.2. Методика разработки и машинной реализации объекта
- •10.3. Методологические аспекты моделирования
- •10.4. Требования пользователя к модели
- •10.5. Этапы моделирования систем
- •Лекция № 11 построение концептуальных моделей систем и их формализация
- •11.1. Построение концептуальных моделей систем и их формализация
- •11.2. Переход от описания к блочной модели
- •11.3. Подэтапы первого этапа моделирования
- •11.3.1. Постановка задачи машинного моделирования системы
- •11.3.2 Анализ задачи моделирования системы
- •11.3.3. Определение требований к исходной информации об объекте моделирования и организация ее сбора
- •11.3.4. Выдвижение гипотез и принятие предположений
- •11.3.5. Определение параметров и переменных модели
- •11.3.6. Установление основного содержания модели
- •11.3.7. Обоснование критериев оценки эффективности системы
- •11.3.8. Определение процедур аппроксимации
- •11.3.9. Описание концептуальной модели системы
- •11.3.10. Проверка достоверности концептуальной модели
- •11.3.11. Составление технической документации по первому этапу
- •11.4. Алгоритмизация моделей систем и их машинная реализация
- •11.5. Принципы построения моделирующих алгоритмов
- •11.6. Формы представления моделирующих алгоритмов
- •11.7. Схемы алгоритмов, программ, данных и систем
- •11.8. Подэтапы второго этапа моделирования
- •11.8.1. Построение логической схемы модели
- •11.8.2. Получение математических соотношений
- •11.8.3. Проверка достоверности модели системы
- •11.8.4. Выбор инструментальных средств для моделирования
- •11.8.7. Верификация и проверка достоверности схемы программы
- •11.8.8. Проведение программирования модели
- •11.8.9. Проверка достоверности программы
- •11.9. Получение и интерпритация результатов моделирования систем
- •11.10. Подэтапы третьего этапа моделирования
- •11.10.3. Проведение рабочих расчетов
- •11.10.4. Анализ результатов моделирования системы
- •11.10.5. Представление результатов моделирования
- •11.10.6. Интерпретация результатов моделирования
- •11.10.8. Составление технической документации по третьему этапу
- •Лекция № 12 Линейное программирование
- •12.1. Общая и основная задачи линейного программирования
- •12.2. Графический метод решения задачи линейного программирования
- •Исходные данные задачи
- •12.3. Составление математической модели
- •Решение
- •12.4. Решение задач линейного программирования на эвм
- •12.5. Метод Гаусса с выбором главного элемента
- •12.6. Итерационные методы
- •Лекция № 13 нелинейное программирование
- •13.1. Постановка задачи нелинейного программирования
- •13.2. Геометрическая интерпретация задачи нелинейного программирования. Графический метод решения
- •13.3. Алгоритм решения знп графическим методом
- •Пример решения знп графическим методом
- •13.4. Метод множителей Лагранжа
- •13.5. Алгоритм метода множителей Лагранжа решения задачи
- •Лекция № 14 динамическое программирование
- •14.1. Постановка задачи динамического программирования
- •14.2. Составление математической модели динамического программирования
- •14.3. Этапы решения задачи динамического программирования
- •Оглавление
- •Математические модели
- •6 80021, Г. Хабаровск, ул. Серышева, 47
Лекция № 6 дискретно-стохастические модели
Рассматриваемые вопросы
1. Дискретно-стохастические модели.
2. Основные соотношения.
3. Возможные приложения.
6.1. Дискретно-стохастические модели (р-схемы)
Рассмотрим особенности построения математических схем при дискретно-стохастическом подходе к формализации процесса функционирования исследуемой системы S. Так как сущность дискретизации времени при этом подходе остается аналогичной рассмотренным в (F-схемах) конечным автоматам, то влияние фактора стохастичности проследим также на разновидности таких автоматов, а именно на вероятностных (стохастических) автоматах.
6.2. Основные соотношения
В общем виде вероятностный автомат (англ. probabilistic automat) можно определить как дискретный потактный преобразователь информации с памятью, функционирование которого в каждом такте зависит только от состояния памяти в нем и может быть описано статистически.
Применение схем вероятностных автоматов (Р-схем) имеет важное значение для разработки методов проектирования дискретных систем, проявляющих статистически закономерное случайное поведение, для выяснения алгоритмических возможностей таких систем и обоснования границ целесообразности их использования, а также для решения задач синтеза по выбранному критерию дискретных стохастических систем, удовлетворяющих заданным ограничениям.
Введем
математическое понятие Р-автомата,
используя
понятия,
введенные для F-автомата.
Рассмотрим
множество G,
элементами
которого являются всевозможные пары
где
и
– элементы
входного подмножества
и
подмножества состояний
соответственно.
Если существуют две такие функции
и
,
то
с их помощью осуществляются отображения
и
,
то
говорят,
что
определяет автомат детерминированного
типа.
Введем
в рассмотрение более общую математическую
схему. Пусть
– множество всевозможных пар вида
где
— элемент
выходного подмножества
.
Потребуем,
чтобы любой элемент
множества
индуцировал
на множестве Ф некоторый закон
распределения следующего вида:
При
этом
,
где
–
вероятности перехода автомата
в состояние
и появления на выходе сигнала
если
он был в
состоянии
и
на его вход в этот момент времени поступил
сигнал
,.
Число таких распределений, представленных
в виде таблиц, равно
числу элементов множества
.
Обозначим
множество этих таблиц
через
.
Тогда
четверка элементов
называется
вероятностным автоматом
(Р-автоматом).
Пусть элементы множества индуцируют некоторые законы распределения на подмножествах и , что можно представить соответственно в виде:
При
этом
где
и
– вероятности
перехода
Р-автомата
в
состояние
и появления выходного сигнала
при
условии,
что Р-автомат
находился
в состоянии
и
на его вход, поступил
входной сигнал
.
Если
для всех
и
имеет
место соотношение
,
то
такой
Р-автомат называется вероятностным
автоматом Мили. Это
требование
означает выполнение условия независимости
распределений
для нового состояния Р-автомата
и
его выходного сигнала.
Пусть теперь определение выходного сигнала Р-автомата зависит лишь от того состояния, в котором находится автомат в данной такте работы. Другими словами, пусть каждый элемент выходного подмножества Y индуцирует распределение вероятностей выходов имеющее следующий вид:
Здесь
где
–
вероятность
появления выходного сигнала
при
условии, что Р-автомат
находился
в состоянии
.