
- •Математические модели
- •Введение
- •1.1. Состояние проблемы моделирования систем
- •1.2. Моделирование как метод научного познания
- •1.3. Использование моделирования при исследовании и проектировании сложных систем
- •1.4. Перспективы развития методов и средств моделирования систем в свете новых информационных технологий
- •Лекция № 2 классификация видов моделирования систем
- •3.1. Системный подход
- •3.2. Подходы к исследованию систем
- •3.3. Процесс моделирования на основе классического подхода
- •3.4. Процесс моделирования на основе системного подхода
- •3.5. Стадии разработки моделей
- •3.6. Характеристики моделей систем
- •3.7. Цель моделирования систем
- •3.8. Основные подходы к построению математических моделей систем
- •Лекция № 4 типовые схемы. Непрерывно-детерминированные модели
- •4.1. Типовые схемы
- •4.2. Непрерывно-детерминированные модели (d-схемы)
- •4.3. Основные соотношения
- •4.4. Возможные приложения
- •Лекция № 5 дискретно-детерминированные модели
- •5.1. Дискретно-детерминированные модели (f-схемы)
- •5.2. Основные соотношения
- •5.3. Возможные приложения
- •Пример: Для рассмотренного выше автомата Мура f2 запишем матрицу соединений и векторов выходов:
- •Лекция № 6 дискретно-стохастические модели
- •6.1. Дискретно-стохастические модели (р-схемы)
- •6.2. Основные соотношения
- •6.3. Возможные приложения
- •Лекция № 7 непрерывно-сТоХастические модели
- •7.1. Непрерывно-стохастические модели (q-схемы)
- •7.2. Основные соотношения
- •7.3. Возможные приложения
- •Пример. Допустим, что процесс обслуживания описывается следующей системой уравнений:
- •Лекция № 8 сетевые модели
- •8.1. Сетевые модели (n-схема)
- •8.2. Основные соотношения
- •8.3. Возможные приложения
- •Лекция № 9 комбинированные модели
- •9.1. Комбинированные модели (а-схемы)
- •9.2. Возможные приложения
- •Лекция № 10 формализация и алгоритмизация процессов
- •10.1. Формализация алгоритмизация процессов
- •10.2. Методика разработки и машинной реализации объекта
- •10.3. Методологические аспекты моделирования
- •10.4. Требования пользователя к модели
- •10.5. Этапы моделирования систем
- •Лекция № 11 построение концептуальных моделей систем и их формализация
- •11.1. Построение концептуальных моделей систем и их формализация
- •11.2. Переход от описания к блочной модели
- •11.3. Подэтапы первого этапа моделирования
- •11.3.1. Постановка задачи машинного моделирования системы
- •11.3.2 Анализ задачи моделирования системы
- •11.3.3. Определение требований к исходной информации об объекте моделирования и организация ее сбора
- •11.3.4. Выдвижение гипотез и принятие предположений
- •11.3.5. Определение параметров и переменных модели
- •11.3.6. Установление основного содержания модели
- •11.3.7. Обоснование критериев оценки эффективности системы
- •11.3.8. Определение процедур аппроксимации
- •11.3.9. Описание концептуальной модели системы
- •11.3.10. Проверка достоверности концептуальной модели
- •11.3.11. Составление технической документации по первому этапу
- •11.4. Алгоритмизация моделей систем и их машинная реализация
- •11.5. Принципы построения моделирующих алгоритмов
- •11.6. Формы представления моделирующих алгоритмов
- •11.7. Схемы алгоритмов, программ, данных и систем
- •11.8. Подэтапы второго этапа моделирования
- •11.8.1. Построение логической схемы модели
- •11.8.2. Получение математических соотношений
- •11.8.3. Проверка достоверности модели системы
- •11.8.4. Выбор инструментальных средств для моделирования
- •11.8.7. Верификация и проверка достоверности схемы программы
- •11.8.8. Проведение программирования модели
- •11.8.9. Проверка достоверности программы
- •11.9. Получение и интерпритация результатов моделирования систем
- •11.10. Подэтапы третьего этапа моделирования
- •11.10.3. Проведение рабочих расчетов
- •11.10.4. Анализ результатов моделирования системы
- •11.10.5. Представление результатов моделирования
- •11.10.6. Интерпретация результатов моделирования
- •11.10.8. Составление технической документации по третьему этапу
- •Лекция № 12 Линейное программирование
- •12.1. Общая и основная задачи линейного программирования
- •12.2. Графический метод решения задачи линейного программирования
- •Исходные данные задачи
- •12.3. Составление математической модели
- •Решение
- •12.4. Решение задач линейного программирования на эвм
- •12.5. Метод Гаусса с выбором главного элемента
- •12.6. Итерационные методы
- •Лекция № 13 нелинейное программирование
- •13.1. Постановка задачи нелинейного программирования
- •13.2. Геометрическая интерпретация задачи нелинейного программирования. Графический метод решения
- •13.3. Алгоритм решения знп графическим методом
- •Пример решения знп графическим методом
- •13.4. Метод множителей Лагранжа
- •13.5. Алгоритм метода множителей Лагранжа решения задачи
- •Лекция № 14 динамическое программирование
- •14.1. Постановка задачи динамического программирования
- •14.2. Составление математической модели динамического программирования
- •14.3. Этапы решения задачи динамического программирования
- •Оглавление
- •Математические модели
- •6 80021, Г. Хабаровск, ул. Серышева, 47
4.4. Возможные приложения
При решении задач системотехники возможное значение имеют проблемы управления большими системами. Следует обратить внимание на системы автоматического управления – частный случай динамических систем, описываемых D-схемами и выделенных в отдельный класс моделей в силу их практической специфики.
Описывая процессы автоматического управления, придерживаются обычно представления реального объекта в виде двух систем управляющей и управляемой (объекта управления). Структура многомерной системы автоматического управления общего вида представлена на рис. 4.2.
Современная
управляющая система – это совокупность
программно- технических средств,
обеспечивающих достижение объектом
управления некоторой цели. Насколько
точно объект управления достигает
заданной цели, можно судить для одномерной
системы для координаты состояния
.
Разность между заданными
и действительным
законами изменения управляемой
величины есть ошибка управления
.
Если предписанный закон изменения
управляемой величины соответствует
закону изменения входного (задающего)
воздействия, т. е.
,
то
.
Системы,
для которых ошибки управления
во все моменты времени, называются
идеальными. На практике реализация
реальных систем невозможна. Таким
образом, ошибка
– необходимый субстрат автоматического
управления, основанного на принципе
отрицательной обратной связи, так как
для приведения в соответствие выходной
переменной
ее заданному значению используется
информация об отклонении между ними.
Задачей системы автоматического
управления является изменение переменной
согласно заданному закону с определенной
точностью (с допустимой ошибкой). При
проектировании и эксплуатации систем
автоматического управления необходимо
выбирать такие параметры системы S,
которые обеспечивали бы требуемую
точность управления, а также устойчивость
системы в переходном процессе.
Рис
4.2. Структура многомерной системы
автоматического Управления. Эндогенные
переменные:
– вектор входных (задающих) воздействий;
– вектор возмущающих воздействий;
– вектор сигналов ошибки;
– вектор управляющих воздействий.
Экзогенные переменные:
–
вектор составляющей системы S;
– вектор выходных переменных, обычно
=
Если система устойчива, то представляют практический интерес поведение системы во времени, максимальное отклонение регулируемой переменной в переходном процессе, время переходного процесса и т. п. Выводы о свойствах систем автоматического управления различных классов можно сделать по виду дифференциальных уравнений, приближенно описывающих процессы в системах. Порядок дифференциального уравнения и значения его коэффициентов полностью определяются статическими и динамическими свойствами системы S.
Таким образом, использование D-схем позволяет формализовать процесс функционирования непрерывно-детерминированных систем S и оценить их основные характеристики, применяя аналитический или имитационный подход, реализованный в виде соответствующего языка для моделирования непрерывных систем и использующий аналоговые или гибридные средства вычислительной техники.
КОНТРОЛЬНЫЕ ВОПРОСЫ
Назовите типовые схемы.
Дайте определение непрерывно-детерминированному подходу.
Назовите основные соотношения D-схем.
Определите область возможных приложений.
Приведите примеры систем, построенных с помощью D-схем.
Приведите пример применения в теории автоматического регулирования.