
- •1.Понятие векторов. Коллинеарность векторов. Компланарность векторов. Модуль вектора. Линейные операции над векторами: умножение на число и сложение векторов. Их свойства.
- •2. Линейная зависимость и линейная независимость векторов. Общие свойства линейной зависимости
- •3. Критерий линейной зависимости двух векторов. Разложение вектора плоскости по двум неколлинеарным векторам.
- •5.Базис на плоскости и в пространстве. Координаты и компоненты вектора. Ортонормированный базис. При линейных операциях над векторами координаты складываются и умножаются на число.
- •6.Проекция вектора на ось, ее выражение и простейшие свойства. Скалярное произведение двух векторов. Определение скалярного произведения. Геометрические свойства скалярного произведения.
- •7.Определение скалярного произведения. Алгебраические свойства скалярного произведения. Выражение скалярного произведения в декартовых координатах. Орт вектора.
- •8.Правые и левые тройки векторов и системы координат. Определение векторного про изведения двух векторов. Геометрические свойства векторного произведения.
- •9.Алгебраические свойства векторного произведения. Определители 2 и 3 порядка. Выражение векторного произведения в декартовых координатах.
- •Вопрос 10.
- •Вопрос 12.
- •Вопрос 13.
- •19. Угол между двумя плоскостями. Условия паралельности и перпендикулярности плоскостей.
- •21.Принадлежность двух прямых плоскости. Уравнение прямой в пространстве, проходящей через две заданные точки.
- •22. Взаимное расположение двух прямых в пространстве: совпадающие, параллельные, пересекающиеся, скрещивающиеся. Расстояние между ними.
- •23.Взаимное расположение прямой и плоскости. Угол между прямой и плоскостью. Условия параллельности, перпендикулярности и принадлежности прямой плоскости.
- •24.Расстояние от точки до прямой в пространстве. Способ нахождения.
- •25.Условие того, что две прямые скрещиваются. Расстояние между скрещивающимися прямыми.
- •26.Определение эллипса, каноническое уравнение. Вывод канонического уравнения. Свойства.
- •27.Определение гиперболы, каноническое уравнение. Вывод канонического уравнения. Свойства
- •29. Уравнение кривой второго порядка. Определение центральной кривой. Необходимое и достаточное условие того, что кривая является центральной. Инварианты.
- •31.Преобразование декартовых координат при повороте осей. Преобразование коэффициентов уравнения второго порядка при повороте осей.
- •32.Приведение кривой второго порядка к каноническому виду. Случай центральной кривой
- •34 Классификация кривых второго порядка. Связь с инвариантами
- •35.Каноническое уравнение эллипсоида. Исследование формы методом сечений
- •36Гиперболоиды. Каноническое уравнение.. Исследование их формы методом сечений.
- •37Параболоиды. Каноническое уравнение. Исследование их формы методом сечений
- •38Цилиндрические и конические поверхности. Их уравнения.
- •39. Раздел № 4. Матрицы. Определители. Обратные матрицы
- •40. Матрицы. Действия над матрицами (произведение на число, сложение матриц). Операция умножения матриц, ее свойства
- •Свойства операции транспонирования матриц:
- •44Минор, дополнительный минор. Алгебраические дополнения. Теорема о разложении определителя по строке (столбцу)
- •45Обратная матрица. Критерий обратимости матрицы.
45Обратная матрица. Критерий обратимости матрицы.
Обра́тная
ма́трица —
такая матрица
A−1,
при умножении на которую, исходная
матрица A
даёт в результате единичную
матрицу
E:
1-й
критерий обратимости матрицы. Для того,
чтобы матрица была
обратимой, необходимо и достаточно,
чтобы она была представима в виде
произведения элементарных матриц.
Достаточность.
Элементарные матрицы обратимы, а
произведение обратимых матриц есть
матрица обратимая. Поэтому утверждение
“матрица, представимая в виде произведения
элементарных матриц, обратима очевидно.
Необходимость.
Пусть матрица обратима.
Покажем, что она представима в виде
произведения элементарных матриц.
Прежде всего заметим, что в силу
предложения 1.5 справедливо равенство
(1.22), где все матрицы, входящие в это
равенство, квадратные и имеют одинаковый
порядок, например,
.
Наше утверждение будет верно, если мы
покажем, что
.
В самом деле, матрицы
обратимы
как произведение обратимых матриц.
Поэтому обратимы матрицы
и
.
Из равенства (1.22) получаем, что матрица