
- •2. Элементарный заряд и его инвариантность.
- •3. Закон сохранения заряда.
- •4. Дифференциальная формулировка закона Кулона.
- •5. Теорема Гаусса
- •6. Потенциальность электростатического поля.
- •7. Скалярный потенциал.
- •8. Уравнения Лапласа и Пуассона. Вычисление напряженности поля внутри и вне заряженного цилиндра.
- •9. Электростатическое поле при наличии проводников.
- •10. Емкость уединенного проводника. Конденсаторы
- •11. Дипольный момент непрерывного распределения зарядов.
- •12. Зависимость поляризованности от напряженности электрического поля. Влияние поляризации на электрическое поле.
- •13. Поле диполя
- •14. Поляризация диэлектриков. Поляризованность. Объемная и поверхностная плотности связанных зарядов.
- •15. Электрическое смещение. Поле плоского конденсатора.
- •16. Теорема Гаусса при наличии диэлектриков.
- •17. Граничные условия для нормальной и тангенциальной компонент электрического поля.
- •1 8. Преломление силовых линий на границе раздела диэлектриков.
- •19. Энергия взаимодействия дискретных зарядов.
- •20. Плотность энергии электрического поля.
- •21. Силы, действующие на точечный заряд, непрерывно распределенный заряд, диполь в электрическом поле.
- •22. Опыт Милликена.
- •23. Механизм поляризации неполярных диэлектриков.
- •24. Механизм поляризации полярных диэлектриков.
- •25. Закон Ома в интегральной и дифференциальной форме.
- •26. Работа и мощность тока
- •27. Правила Кирхгофа.
- •28. Опыт Толмена и Стюарта.
- •29. Эффект Холла.
- •30. Зависимость электропроводности от температуры, сверхпроводимость.
- •31. Понятие о зонной теории твердых тел. Энергетические зоны проводников, полупроводников и диэлектриков.
- •32. Собственная и примесная проводимость полупроводников. Доноры и акцепторы.
- •3 3. Эффект Пельтье. Эффект Томпсона. Эффект Зеебека.
- •34. Основные типы газового разряда.
- •35. Плазма.
- •3 6. Полевая трактовка закона взаимодействия элементов тока. Опыт Ампера.
- •37. Закон Био-Савара
- •38. Сила Ампера. Сила Лоренца.
- •39. Закон полного тока. Теорема о циркуляции вектора магнитной индукции.
- •40. Магнитное поле при наличии магнетиков.
- •41. Молекулярные токи в магнетике, объемные и поверхностные токи.
- •42. Диамагнетики.
- •43. Парамагнетики.
- •44. Ферромагнетики.
- •45. Закон электромагнитной индукции Фарадея.
- •46.Энергия магнитного поля
- •47. Резонансы в цепи переменного тока.
- •48. Ток смещения. Система уравнений Максвелла.
- •49. Закон сохранения энергии электромагнитного поля.
- •50. Плоские электромагнитные волны.
26. Работа и мощность тока
Электрическая энергия легко преобразуется в другие виды энергии. Мерой изменения энергии электрического тока служит работа источника тока, создающего и поддерживающего электрическое поле в цепи. Стационарное электрическое поле, перемещающее заряды по проводнику, совершает работу. Эту работу называют работой тока. Работа электрического тока на участке цепи, как следует из определения напряжения A=qU, где q — электрический заряд, проходящий по участку цепи, а U — напряжение на участке. Учитывая, что q = It, где I — сила тока в проводнике, а t — время прохождения электрического тока, для работы тока получим A=IUt.
Если R — сопротивление однородного участка цепи, то, используя закон Ома для участка цепи, можно получить формулу для расчета работы тока: A=I2Rt=U2Rt. Если участок цепи не является однородным, то работу совершает не только стационарное электрическое поле, но и сторонние силы, и полная работа определяется по формуле A=I(φ1−φ2±ε)t.
По вышеприведенным формулам можно рассчитать полную работу тока на данном участке цепи.
Если в цепи есть электродвигатель, то энергия электрического тока, во-первых, расходуется на совершение механической работы — полезная работа Ameh, во-вторых, затрачивается на нагревание обмоток электродвигателя и соединительных проводов — теряемая энергия. В этом случае коэффициент полезного действия можно рассчитать как A0=Ameh+Q; η=AmehA0=Ameh(Ameh+Q).Говоря о коэффициенте полезного действия источника тока, под полезной работой подразумевают работу, совершаемую во внешней цепи постоянного тока: Ap=IUt=I2Rt. Затраченная же работа источника тока равна работе сторонних сил: Az=qε=Iεt. Единица работы электрического тока в СИ — джоуль (Дж). Скорость совершения работы тока на данном участке цепи характеризует мощность тока. Мощность тока определяют по формуле P=A/t или P = IU. Используя закон Ома для участка цепи, можно записать иначе формулу для мощности тока P=I2R=U2R. Единица мощности тока — ватт: 1 Вт = Дж/с.
27. Правила Кирхгофа.
Правила Кирхгофа — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного, переменного и квазистационарного тока.
Первое
правило Кирхгофа гласит, что алгебраическая
сумма токов в
каждом узле любой цепи равна нулю. При
этом втекающий в узел ток принято считать
положительным, а вытекающий —
отрицательным:
Иными
словами, сколько тока втекает в узел,
столько из него и вытекает. Это правило
следует из фундаментального закона
сохранения заряда.
Второе правило Кирхгофа (правило напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений на всех ветвях, принадлежащих любому замкнутому контуру цепи, равна алгебраической сумме ЭДС ветвей этого контура. Если в контуре нет источников ЭДС (идеализированных генераторов напряжения), то суммарное падение напряжений равно нулю:
для
постоянных напряжений
для
переменных напряжений
Это правило вытекает из 3-го уравнения Максвелла, в частном случае стационарного магнитного поля. Иными словами, при полном обходе контура потенциал, изменяясь, возвращается к исходному значению. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи. При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура. При этом падение напряжения на ветви считают положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, и отрицательным — в противном случае. Правила Кирхгофа справедливы для линейных и нелинейных линеаризованных цепей при любом характере изменения во времени токов и напряжений.