
- •Механика в истории науки и общества Оглавление
- •1. Предыстория человечества
- •1.1. Основные этапы антропогенеза
- •1.1.1 Биологическая эволюция пречеловека
- •1.1.2. Социально-культурная эволюция
- •1.2. Неолитическая революция
- •1.2.1. Территориальная экспансия и переход к оседлости
- •1.2.2. Культивация и одомашнивание
- •1.3. Изобретения и открытия каменного века
- •1.3.1. Орудия и технологии палеолита
- •1.3.2. Техника и изделия мезолита
- •2. Древние цивилизации
- •2.1. От бронзового века к железному
- •2.1.1. Бронзовый век
- •2.1.2. Железный век
- •2.2. Цивилизации Месопотамии
- •2.2.1. Шумер
- •2.2.2. Ассирия
- •2.2.3. Вавилон – «пуп неба и земли»
- •2.2.4. Строительство и архитектура
- •2.3. Древний Египет
- •2.3.1. Пирамиды, обелиски, колонны
- •2.3.2. Наука и техника
- •2.3.3. Хеттское царство
- •2.4. Древний Китай
- •2.4.1. Философия
- •2.4.2. Государственность
- •2.4.3. Наука
- •2.4.4. Техника и технология
- •2.5. Цивилизации Индии, Европы и Америки
- •2.5.1. Культура Древней Индии
- •2.5.2. Культура Древней Европы
- •2.5.3. Цивилизации доколумбовой Америки
- •2.5.4. Итоги Древнего Мира
- •3. Начало Античного мира
- •3.1. Образование древнегреческого этноса
- •3.1.1. Ранняя Греция
- •3.1.2. Архаическая Греция
- •3.1.3. Афины и Спарта
- •3.2. Рождение Античной науки
- •3.2.1. Фалес – первый мудрец и ученый
- •3.2.2. Философия Фалеса
- •3.2.3. Ученики и последователи
- •3.3. Пифагор и его братство
- •3.3.1. Образование братства
- •3.3.2. Мистика чисел
- •3.3.3. Геометрия
- •3.3.4. Музыка и астрономия
- •3.3.5. Знаменитые пифагорейцы
- •Классический период (эпоха демократии)
- •4.1. Чудеса света в Древней Греции
- •4.1.1. Артемисион
- •4.1.2. Зевс Олимпийский
- •4.1.3. Колосс Родосский
- •4.1.4. Галикарнасский мавзолей
- •4.1.5. Фаросский маяк
- •4.2. Атомисты и софисты
- •4.2.1. Школа элеатов
- •4.2.2. Зарождение атомистики
- •4.2.3. Софисты – учителя мудрости
- •4.3. Великие философы Античности
- •4.3.1. Судьба Сократа
- •4.3.2. Платон и его Академия
- •4.3.3. Жизнь Аристотеля
- •4.3.4. Труды и идеи
- •4.4 Последователи великих философов
- •4.4.1. Евдокс Знаменитый
- •4.4.2. Триада и эпициклы Менехма и эпициклы Гераклида
- •4.4.3. “Начала” Евклида
- •Эпоха эллинизма
- •5.1 Александрийский Мусейон
- •5.1.1. Александрия
- •5.1.2. Библиотека
- •5.1.3. Образование и спорт
- •5.2. Выдающиеся александрийцы
- •5.2.1. Ученые Мусейона
- •5.2.2. Эратосфен – “измеривший Землю”
- •5.3 Архимед Великомудрый
- •5.3.1. Время Архимеда
- •5.3.2. Архимед – инженер
- •5.3.3. Архимед – физик и механик
- •5.3.4. Архимед – математик
- •5.3.5. “Эфод” – путь к интегрированию
- •5.4. После Архимеда
- •5.4.1. «Конические сечения» Аполлония
- •5.4.2. Эпигоны
- •5.4.3. Инженеры Александрии
- •5.4.4. Герон-механик
- •5.5. Рождение научной астрономии
- •5.5.1. Аристарх – “Коперник Античности”
- •5.5.2. Прецессия по Гиппарху
- •5.5.3. Птолемеева система Мироздания
- •6. Римская империя и ее закат
- •6.1. Зодчество и архитектура
- •6.1.1. Особенности римской истории и культуры
- •6.1.2. «Архитектура» Витрувия
- •6.1.3. Гражданское строительство
- •6.2. Военная и гражданская техника
- •6.2.1. Военные машины
- •6.2.2. Гражданские изобретения
- •6.3. Наука и образование
- •6.3.2. Алхимия
- •6.3.3. Образование
- •6.4. Последние ученые Античности
- •6.4.1. Гален – первый фармаколог
- •6.4.2. Рождение Диофантова анализа
- •6.4.3. Гипатия – мученица науки
- •Итоги Античности
- •7. Образование и наука Средневековья
- •7.1. Крушение Античного мира и становление христианства
- •7.1.1. От Рима к Византии
- •7.1.2. Формирование христианской идеологии
- •7.1.3. Вехи Средневековья
- •7.2. Система образования
- •7.2.1. Христианская мифология
- •7.2.2. Христианские школы
- •7.2.3. Марциан Капелла
- •7.2.4. Последний римлянин
- •7.2.5. Европейское просвещение
- •7.3. Становление науки в средневековой Европе
- •7.3.1. Критика античной механики
- •7.3.2. Концепции ранних схоластов
- •7.3.3. Первые мыслители и ученые
- •7.3.4. Начало европейской математики и физики
- •8. Средневековые революции
- •8.1. Тенденции европейского Средневековья
- •8.1.1. Новации Средневековья
- •8.1.2. Революция в военном деле
- •8.1.3. Корабельная революция
- •8.2. Начало энергетики
- •8.2.1. Водяное колесо
- •8.2.2. Ветряные мельницы
- •8.3. Города, зодчество, ремесленничество
- •8.3.1. Городская революция
- •8.3.2. Часы в Древнем и Античном мире
- •8.3.3. Часы и механизмы Средневековья
- •8.4. Арабское Средневековье
- •8.4.1. Мусульманский Ренессанс
- •8.4.2. Роторные и рычажные машины
- •8.4.3. Рождение алгебры
- •8.4.4. Тригонометрия и астрономия
- •8.4.5. Итоги Средневековья
- •9. Итальянское Возрождение
- •9.1. Вехи европейского Возрождения
- •9.1.1. Особенности европейского развития
- •9.1.2.Компас и книга рычаги европоцентризма
- •9.1.3. Последние птолемеевцы
- •9.1.4. Математики Возрождения
- •9.2. Механика и искусство
- •9.2.1. Купол Брунеллески
- •9.2.2. Альберти – теоретик зодчества
- •9.2.3. Леонардо да Винчи – художник и изобретатель
- •9.3. Тайны кубического уравнения
- •9.3.1. Пачиоли – монах-математик
- •9.3.2. Ферро и Тарталья
- •9.3.3. Формулы Кардано
- •10. Новая астрономия и начало естествознания
- •10.1 Астрономический ренессанс
- •10.1.1. Кузанец ─ глашатай бесконечной Вселенной
- •10.1.2. Коперник – монах-революционер
- •10.1.3. Бруно – мученик науки
- •10.1.4. Браге в Ураниборге
- •10.2. Кеплер – первый теоретик Возрождения
- •10.2.2. Физико-математические и юридические проблемы
- •10.3. Галилей – родоначальник естествознания
- •10.3.1. Начало экспериментальной механики
- •10.3.2. Рождение телескопа
- •10.3.3. Отношения с церковью
- •10.3.4. Последние годы и свершения
- •10.3.5. Ученики и последователи
- •10.4. Лунные законы Кассини
- •10.4.1. От астрологии к астрономии
- •10.4.2. Овалы Кассини
- •11. Французский ренессанс
- •11.1. Начало французской науки
- •11.1.1. Виет – «отец алгебры»
- •11.1.2 Символика и теоремы
- •11.2. Кружок Мерсенна
- •11.2.1. Французские колледжи
- •11.2.2. «Ученый секретарь Европы»
- •11.3. Декарт и картезианство
- •11.3.1. Ранние поиски и интересы
- •11.3.2. Нидерландское затворничество
- •11.3.3. Научное наследие
- •11.4. Ферма и Роберваль ─ предтечи математического анализа
- •11.4.1. Начало теории экстремумов
- •11.4.2. Открытие вариационного принципа
- •11.4.3. Теория чисел
- •11.4.4. Роберваль – начало пути
- •11.4.5. Математические результаты
- •11.5. Паскаль – между наукой и верой
- •11.5.1. Детство вундеркинда
- •11.5.2. Годы расцвета
- •11.5.3. Религиозные устремления
- •11.5.4. Итоги Возрождения
- •12. Реформация в Голландии и Германии
- •12.1. Голландское Возрождение
- •12.1.2. Всходы голландской науки
- •12.2. Гюйгенс – гордость Голландии
- •12.2.1 Становление ученого
- •12.2.2. Маятниковые часы
- •12.2.3. Физические и технические задачи
- •12.2.4. Признание коллег и Академий
- •12.3. Возрождение и Реформация в Германии
- •12.3.1. Магдебургские полушария
- •12.3.2. Лейбниц – юрист и дипломат
- •12.3.3. Открытие математического анализа
- •12.3.4. Завершающие шаги
- •12.3.5. Итоги Возрождения и Реформации
- •13. Английская Реформация
- •13.1. Начало Нового времени
- •13.1.1. Бэкон – «лорд-канцлер науки»
- •13.1.2. Бойль – исследователь воздуха
- •13.2.1. Становление учёного
- •13.2.2. Английская наука до Ньютона
- •13.2.3. Начало карьеры
- •13.2.4. Идеи о силах тяготения
- •13.3 Главный теоретик Мироздания
- •13.3.1. Молодые годы
- •13.3.2. Оптика и математика
- •13.3.3. Соперничество с Гуком
- •13.3.4. Рождение классической механики
- •13.3.5. Общественная деятельность
- •13.4 Наблюдательная астрономия в Англии
- •13.4.1 Наблюдения и измерения в Солнечной системе
- •13.4.2 . Рождение звездной астрономии
- •14. Академии наук в век Просвящения
- •14.1. Огосударствление науки
- •14.1.1. Научные школы Античности и Возрождения
- •14.1.2. Парижская Академия – центр европейской науки
- •14.1.3. Предыстория российской науки
- •14.1.4. Петербургская Академия и ее члены
- •14.2. Ломоносов – провозвестник российского Возрождения.
- •14.2.1. Годы учебы и странствий
- •14.2.2. Начало научного и поэтического творчества
- •14.2.3. Ученый европейского уровня
- •14.2.4. Последние годы академика
- •14.3. Династия Бернулли
- •14.3.1. Якоб – первенец династии
- •14.3.2. Иоганн – злой гений династии
- •14.3.3. Даниил – творец гидродинамики
- •14.4. «Ce diable b'homme» Euler – «Этот диавол» Эйлер
- •14.4.1. Начало пути
- •14.4.2. Первый петербургский период
- •14.4.3. Разработка математических моделей механики
- •14.4.4. Математик от Бога
- •15. Математизация и специализация механики
- •15.1. Французская школа механики
- •15.1.1. Клеро – пионер небесной механики
- •15.1.2. Механики – Вариньона и Даламбера
- •15.1.3. Лагранж –гений аналитической механики
- •15.1.4 «Французский Ньютон» – Лаплас
- •15.2 Наука и образование в Европе XIX века
- •15.2.1 Зарождение научно-инженерного образования во Франции
- •15.3.4 Cтупени и стимулы развития научного мышления
14.4. «Ce diable b'homme» Euler – «Этот диавол» Эйлер
14.4.1. Начало пути
Величайший математик XVIII века Леонард Эйлер (1707 – 1783 гг.) родился в Базеле (Швейцария) в семье кальвинистского пастора Пауля Эйлера. В университете Пауль был учеником Якоба Бернулли и на всю жизнь сохранил интерес к математике, которой часто посвящал свои досуги, приобщая к ней сына Леонарда. Мать Эйлера (урожденная Брюкер) также принадлежала к известному в Базеле семейству, члены которого славились своими научными и литературными интересами. Неудивительно, что и юный Леонард в школьные годы увлекся математикой и в 13-летнем возрасте поступил в Базельский университет, где вскоре стал учеником И. Бернулли. Базельский университет был в то время очень невелик – в нем обучалось около 100 студентов, а штат преподавателей состоял из 19 профессоров. Наиболее квалифицированные из них преподавали на кафедре математики, руководимой Я. Бернулли.
Заметив блестящую одаренность Леонарда, И. Бернулли начал предлагать ему самостоятельно изучать трактаты по математике, а для обсуждения неясных вопросов стал приглашать его по субботам на домашние консультации. Когда же 19-летний ученик начал догонять своего учителя, Иоганн стал предлагать ему продолжить некоторые свои исследования. Одной из таких задач стало определение брахистохроны в среде с сопротивлением, а другой – построение геодезических линий на кривых поверхностях, с чем молодой Леонард успешно справился. Отсюда, видимо, и возник первый интерес будущего великого ученого к вариационным задачам, завершившийся, в конце концов, созданием (наряду с Лагранжем) отдельной ветви математического анализа – вариационного исчисления.
Регулярно бывая в доме своего учителя, он познакомился, а затем и подружился с сыновьями И. Бернулли – Николаем и Даниилом, – которые хотя и были намного старше, быстро оценили яркий талант и трудолюбие юного студента и приняли его в свой круг. Не менее теплые и доверительные отношения сложились у юноши с его знаменитым учителем И. Бернулли, для которого Эйлер впоследствии стал чуть ли не единственным математиком Европы, которому он оказывал абсолютное доверие и расположение. И эта связь с семейством Бернулли сыграла важнейшую роль в будущей жизни великого математика, накрепко соединив его судьбу с далекой и суровой Российской империей, ставшей его второй родиной.
Блестяще закончив университет (08.06.1724) и получив степень магистра искусств, 17-летний Леонард сразу же столкнулся со своей невостребованностью в родной стране. Однако без дела он сидеть не мог и с юношеским энтузиазмом откликнулся на объявленный Парижской АН конкурс по определению оптимального расположения парусных мачт на палубе корабля. Представленное им решение получило похвальный отзыв французских академиков, однако премией оно отмечено не было из-за слишком юного возраста автора. Хотя эта первая конкурсная работа стала своеобразным «первым блином», который, как известно, «всегда комом», она положила начало длинной цепочке дальнейших конкурсных работ, за которые Эйлер в будущем был удостоен премиями Парижской АН 14 раз (Д. Бернулли, его ближайший соперник на этом поприще, получил 10 премий ПАН).
Высокую оценку заслужила «Диссертация по физике о звуке», представленная Леонардом в Совет Базельского университета в надежде получить должность профессора (преподавателя) на кафедре физики. Однако и эту работу постигла та же судьба и по той же причине. Эти неудачи оказались тем не менее счастливыми для молодого ученого – он принял предложение своих друзей Николая и Даниила Бернулли, уехавших еще в 1725 г. в Петербург на должности академиков ИПАН. В 1726 г. они убедили президента ИПАН Блюментроста пригласить Эйлера в Петербург на свободную вакансию адъюнкта (младшего по рангу академика) по кафедре физиологии ИПАН. Согласившись на эту должность, Леонард начал серьезное изучение физиологии и медицины и за несколько месяцев благодаря своей феноменальной памяти преуспел в этом деле. В апреле 1727 г. он выезжает из Базеля и через полтора месяца ступает ногой на землю России. Радость прибытия была омрачена печальным известием – в этот день от воспаления легких умерла Екатерина I, много сделавшая для становления первого научного учреждения России – ИПАН. Еще раньше зимой 1726 г. не выдержав сурового петербургского климата, заболел и скончался Николай Бернулли. Однако судьба благоволила молодому Эйлеру, позволив ему стать адъюнктом математики ИПАН с окладом 300 р. в год.
Через 2 года после смерти Петра II (1730 г.) к власти пришла Анна Иоанновна, а в ИПАН воцарился ее бывший библиотекарь И. Шумахер. Положение иностранных академиков после этого стало ухудшаться, и начался процесс их поочередного возвращения в Европу. Эйлер, обладавший очень спокойным и терпеливым характером, сумел очень долго продержаться в ИПАН (до 1741 г., а затем с 1766 до 1783) и вырасти в ученого мирового масштаба, прославив не только свое имя, но и воспитавшую его ИПАН.