Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika1.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
798.72 Кб
Скачать

1)Вя́зкость (вну́треннее тре́ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла работы, затрачиваемой на это перемещение.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единицы измерения: Па·с = 10 пуаз) и кинематическую вязкость (единицы изме

,

2)Ньютоновские жидкости

Нью́тоновская жи́дкость (названная так в честь Исаака Ньютона) — вязкая жидкость, подчиняющаяся в своём течении закону вязкого трения Ньютона, то есть касательное напряжение и градиент скорости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость[1][2][3].

Неньютоновской жидкостью называют жидкость, при течении которой её вязкость зависит от градиента скорости.[1][2] Обычно такие жидкости сильно неоднородны и состоят из крупных молекул, образующих сложные пространственные структуры.

Когда жидкость неоднородна, например, состоит из крупных молекул, образующих сложные пространственные структуры, то при её течении вязкость зависит от градиента скорости. Такие жидкости называют неньютоновскими. Вязкость неньютоновских жидкостей увеличивается при уменьшении скорости тока жидкости.

 С физико-химической точки зрения кровь может быть представлена как жидкая среда (вода), в которой взвешена твердая, нерастворимая фаза (форменные элементы крови и высокомолекулярные вещества). Частицы дисперсной фазы достаточно крупны, чтобы противостоять броуновскому движению. Поэтому общим свойством таких систем является их неравновесность. Компоненты дисперсной фазы постоянно стремятся к выделению и осаждению из дисперсной среды клеточных агрегатов. Наблюдается зависимость вязкости крови от количества и объема эритроцитов, общего содержания белка и соотношения его фракций в плазме, а также от содержания в крови углекислоты. Повышение вязкости отмечается при сгущении крови и некоторых видах лейкозов (эритремии, миелофиброзах), понижение — при анемиях.

3) КВЧ-терапи́я — биофизическая теория, исследующая механизмы воздействия на живой организм электромагнитного излучения (ЭМИ) миллиметрового диапазона (1 — 10 мм) крайне высокой частоты (30 — 300 ГГц) низкой интенсивности, а также медицинская практика, использующая эффекты указанного воздействия при лечении различных заболеваний.

В ответной реакции организма на ЭМИ КВЧ-диапазона можно выделить элементы кожно-висцеральных рефлексов и в большей степени реакцию со стороны неспецифических адаптационно-приспособительных механизмов и защитных реакций.[10]

В ряде работ показаны специфические ответы биологических объектов (тканей, органов, органных систем) на воздействие ЭМИ КВЧ-диапазона, так, например, выявлено, что выраженное иммунотропное действие низкоинтенсивного ЭМИ КВЧ-диапазона обусловлено изменением организации хроматина клеток лимфоидных органов, проявляется в модификации клеточного и неспецифического иммунитета:

  • снижает интенсивность клеточного иммунного ответа в реакции гиперчувствительности замедленного типа[11]

  • оказывает противовоспалительное действие, проявляющееся уменьшением экссудации и гиперемии очага воспаления[источник не указан 491 день]

  • уменьшает фагоцитарную активность нейтрофилов периферической крови и не влияет на гуморальный ответ на иммунозависимый антиген[12]

  • локальное действие КВЧ излучения вызывает дегрануляцию тучных клеток, что является важным механизмом в реализации действия ЭМИ КВЧ на уровне организма с синхронным участием нервной, эндокринной и иммунной систем [13]

  • отражено снижение повышенных стрессом уровней катехоламинов, серотонина и экспрессия Ia-антигена развивающиеся под воздействием ЭМИ КВЧ-диапазона, что позволяет считать данный фактор иммуно- и вегетостабилизирующим (Бочкарева А. Г., 2002)

  • выявлены особенности реагирования тканей селезенки в зависимости от параметров (в частности, частоты излучения) ЭМИ КВЧ-диапазона, показано выраженное превентивное и постстрессовое влияние КВЧ-терапии на структурно-функциональное состояниенадпочечников (Полина Ю. В., 2009)

  • заявлено, что КВЧ-воздействие оказывает ингибирующее воздействие на повышенную функциональную активность тромбоцитов, нормализуя функционирование тромбоцитарное звено системы гемостаза (Волин М. В., 2001).

Микроволновая терапия (или сверхвысокая терапия — СВЧ-те­рапия) — лечебный метод, при котором на организм больного воз­действуют электромагнитным полем сверхвысокой частоты.

В спек­тре электромагнитных волн микроволны находятся на границе со световыми и обладают некоторыми свойствами лучистой энергии. В разных средах они преломляются, отражаются, поглощаются, их можно концентрировать в узкий пучок, направлять на большие расстояния.

Под влиянием микроволновой терапии происходит расширение кровеносных сосудов, усиление кровотока, уменьшение спазма гладкой мускулатуры, нормализуются процессы торможения и возбуждения нервной системы, ускоряется прохождение импуль­сов по нервному волокну, изменяется белковый, липидный, угле­водный обмен.

4) Дарсонвализация, метод лечения импульсным током высокой частоты (110—400 кгц), высокого напряжения (десятки тысяч вольт) и малой силы (до 100—200 ма). Название по имени Ж. А. Д'Арсонваля, впервые предложившего метод в 1891. Различают местную и общую Д. При местной Д. ток от высокочастотного импульсного генератора поступает к пациенту через вакуумные или заполненные графитом стеклянные электроды, которые перемещают по поверхности тела или вводят в полость (например, в прямую кишку). При общей Д. пациента в сидячем или лежачем положении помещают в "клетку Д'Арсонваля" — катушку колебательного контура. Действующими факторами местной Д. являются импульсный высокочастотный ток, проходящий через тело пациента, и электрический разряд, возникающий между кожей пациента и электродом; общей Д. — вихревые высокочастотные токи, наведённые в поверхностных тканях пациента по закону электромагнитной индукции.

При Д. изменяются физико-химические процессы в тканях, в результате при местной Д. улучшаются деятельность центральной нервной системы, трофика тканей, обменные процессы, кровообращение, повышается фагоцитарная активность лейкоцитов. Механизм действия общей Д. на организм мало изучен; известно, что она оказывает успокаивающее влияние, повышает обмен веществ, снижает повышенное артериальное кровяное давление. Местную Д. применяют при невралгии, неврите слухового нерва, миалгии, головных болях, кожном зуде, вагинизме, при начальных стадиях облитерирующих заболеваний сосудов, варикозном расширении вен голени, геморрое, незаживающих ранах и язвах, отморожениях 1-й и 2-й степеней и как средство косметики; общую Д. — при гипертонической болезни 1-й и 2-й степеней, неврастении с повышенным возбуждением, при плохом сне, некоторых болезнях обмена веществ.

При регулярном использовании аппарата Дарсонваля улучшается деятельность центральной нервной системы, в частности сон, работоспособность; нормализуется тонус сосудов; проходят головные боли, усталость; повышается иммунитет организма.

Основными действующими факторами аппарата Дарсонваля являются высокочастотный ток, высоковольтный коронный разряд, тепло, выделяющееся в тканях организма и в области коронного разряда, незначительное количество озона и окислов азота, слабое ультрафиолетовое излучение, генерируемое коронным разрядом, слабые механические колебания надтональной частоты в тканях (осциляторный эффект).

5) При ламинарном режиме жидкость движется слоями без поперечного перемешивания, причем пульсации скорости и давления отсутствуют.

Течение жидкости в цилиндрической трубе, при котором скорости частиц жидкости всюду направлены вдоль оси трубы, называется ламинарным или слоистым. Такое течение возможно только при не очень большой скорости потока вязкой жидкости в трубах малого поперечного сечения. С увеличением скорости или с увеличением площади сечения трубы характер течения принципиально изменяется. Вместо слоистого течения возникает носящее нерегулярный характер завихрение, или турбулентное у течение.Изменение характера течения можно наблюдать в эксперименте со стеклянными трубками различного сечения при различных перепадах давления, при различных скоростях жидкости. Линии тока при стационарном течении можно сделать видимыми, впуская во входное сечение стеклянной трубки окрашенную струйку жидкости. При небольшой скорости потока в узкой трубке подкрашенная струйка движется ровно и параллельно оси трубки. При постепенном увеличении скорости потока внезапно начинается нерегулярное движение, которое постепенно захватывает всю трубку, струйка, ровная у входа, разбивается на множество извилистых струек. Такие нерегулярные изменения движения происходят не из-за изменения внешних условий, а вследствие неустойчивости ламинарного течения при больших скоростях.

Турбулентное движение. 

При стационарном турбулентном движении скорость жидкости в данном месте не остается постоянной, а совершает хаотические колебания и по модулю, и по направлению. Но средняя скорость в данном месте трубы будет постоянна и направлена вдоль оси трубы. На рис. 226 а показано распределение 

При турбулентном режиме слоистость нарушается, движение жидкости сопровождается перемешиванием и пульсациями скорости и давления.

Критерием для определения режима движения является безразмерное число Рейнольдса. Для труб круглого сечения число Рейнольдса определяется по формуле:

Re = υ·d/ν;

- для потоков произвольного поперечного сечения

Re = υ·Rг /ν;

или

Re = υ·Dг /ν;

где υ — средняя скорость жидкости; d — диаметр трубы; Rг — гидравлический радиус; Dг — гидравлический диаметр; ν — кинематический коэффициент вязкости жидкости.

Число, или, правильнее, критерий Рейно́льдса ( ), — безразмерная величина, характеризующая отношение нелинейного и диссипативного членов в уравнении Навье — Стокса[1]. Число Рейнольдса также считается критерием подобия течения вязкой жидкости.

Число Рейнольдса определяется следующим соотношением:

Гидродинамическое сопротивление, сопротивление движению тела со стороны обтекающей его жидкости или сопротивление движению жидкости, вызванное влиянием стенок труб, каналов и т.д. При обтекании неподвижного. тела потоком жидкости (газа) или, наоборот, когда тело движется в неподвижной среде, Г. с. представляет собой проекцию главного вектора всех действующих на тело сил на направление движения.

6)Методы определения вязкости жидкостей

 Метод Стокса. Этот метод определения вязкости основан на измерении скорости медленно движущихся в жидкости небольших тел сферической формы.  На шарик, который падает в жидкости вертикально вниз, действуют три силы: сила тяжести Р=(4/3);πr3ρg (ρ - плотность шарика), сила Архимеда FA=(4/3);πr3ρ'g (ρ' - плотность жидкости) и сила сопротивления, эмпирически установленная Дж. Стоксом: F=6πηrν, где r - радиус шарика, ν - его скорость. При равномерном движении шарика P=FA+F или    откуда   Измерив скорость равномерного движения шарика, можно определить вязкость жидкости (газа). Определение вязкости крови. Определение вязкости крови основано на сравнении скорости продвижения крови и дистиллированной воды в одинаковых капиллярах в вакууме при комнатной температуре. Определение проводится в приборе вискозиметре. В правую капиллярную пипетку вискозиметра набирают дистиллированную воду до отметки “0”. В левый капилляр насасывают кровь из пальца также до нулевой отметки. Проворачивают трехходовой кран таким образом, чтобы соединить обе капиллярные пипетки с резиновой трубкой, через которую втягивают воздух из обеих пипеток для образования вакуума. При этом столбики воды и крови продвигаются вперед с разной скоростью, которая зависит от вязкости. Как только столбик крови дойдет до отметки “1”, втягивание воздуха прекращают. За это время вода, обладающая меньшей вязкостью, продвигается значительно дальше, чем кровь. Вязкость крови определяют по длине пути, пройденного водой, который отсчитывается по шкале градуированной пипетки. Вязкость крови в норме для мужчин равна 4,3—5,4, а для женщин 3,9—4,9 делений шкалы.

8) Простая диффузия через липидный слой в живой клетке обеспечивает прохождение кислорода и углекислого газа. Ряд лекарственных веществ и ядов также проникает через липидный слой. Однако простая диффузия протекает достаточно медленно и не может снабдить клетку в нужном количестве питательными веществами. Поэтому имеются другие механизмы пассивного переноса вещества в мембране, к ним относится диффузия и облегченная диффузия (в комплексе с переносчиком).

Порой, или каналом, называют участок мембраны, включающий белковые молекулы и липиды, который образует в мембране проход. Этот проход допускает проникновение через мембрану не только малых молекул, например молекул воды, но и более крупных ионов. Каналы могут проявлять избирательность по отношению к разным ионам. Облегчает диффузию перенос ионов специальными молекулами-переносчиками.

Потенциал покоя. Поверхностная мембрана клетки неодинаково проницаема для разных ионов. Кроме того, концентрация каких-либо определенных ионов различна по разные стороны мембраны, внутри клетки поддерживается наиболее благоприятный состав ионов. Эти факторы приводят к появлению в нормально функционирующей клетке разности потенциалов между цитоплазмой и окружающей средой (потенциал покоя).

Различные концентрации ионов внутри и вне клетки созданы ионными насосами – системами активного транспорта. Основой вклад в потенциал покоя вносят только ионы K+ и Cl-.

Потенциал действия и его распространения

При возбуждении разность потенциалов между клеткой и окружающей средой изменяется, возникает потенциал действия.

В нервных волокнах происходит распространение потенциала действия. Распространение потенциала действия по нервному волокну происходит в форме автоволны. Активной средой являются возбудимые клетки: скорость распространения возбуждения по гладким немиелинизированным нервным волокнам примерно пропорциональна квадратному корню из их

9)+

10) Активный транспорт веществ через мембрану

Другие белки-переносчики (их иногда называют белки-насосы) переносят через мембрану вещества с затратами энергии, которая обычно поставляется при гидролизе АТФ. Этот вид транспорта осуществляется против градиента концентрации переносимого вещества и называется активным транспортом. Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ.Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств — насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин — насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом — транспортом другого вещества, движение которого по градиенту концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

11) Ионными насосами называют молекулярные механизмы, локализованные в мембране и способные транспортировать вещества за счет энергии, высвобождаемой при расщеплении АТФ, или любого другого вида энергии. Как говорилось, все клетки используют единый механизм сопряжения энергии, полученной при окислении главным образом углеводов и жирных кислот (иногда — белков или НК) в митохондриальном матриксе, с работой мембрано-связанного протонного насоса. Протонный насос универсален, то есть может работать и как генератор, и как двигатель. В режиме генератора он трансформирует энергию электрического поля и перепада концентраций по ионам водорода (протонный градиент) в химическую энергию, которая запасается в виде АТФ. Аденозинтрифосфат является «энергетической валютой» клетки, что доказал Нобелевский лауреат по физиологии и медицине 1953 г. FA. Lipmann.

Натриевый насос (Na++-обменивающая АТФ-аза)

Основная функция этого насоса — поддержание в живом организме электролитного гомеостаза. Он не только регулирует внутриклеточную концентрацию ионов, но и генерирует разность электрических потенциалов на мембране. Этот насос расположен на внутренней оболочке митохондрий. Результат его действия описан в табл. 5. Обмен ионов происходит против сил электродиффузии. В покое Ма++-АТФаза использует третью часть всего АТФ, образующегося в организме.

При этом насос стимулируют с внутренней стороны мембраны только АТФ и Na+, а с наружной — только К+. При повышении температуры поток Na+ из клетки увеличивается. Ингибируется насос специфическим ингибитором — сердечным гликозидом «оубайном» (=уабаин, строфантин G) — только с наружной стороны мембраны. В целом натриевый насос обменивает клеточный Na+ на К+ из среды. Как и другие ионные насосы, натриевый состоит из двух основных компонентов — фермента и ионного канала.

За счет энергии расщепления АТФ активированный фермент изменяет свою ориентацию и форму внутри мембраны и поворачивается в сторону среды. Из клетки выталкиваются 3 иона Na+, а в клетку поступают 2 иона Кчерез центральную пору, которую «открывают» меньшие субъединицы (55 кДа) этой системы. После ионообменной реакции на наружной стороне мембраны ионообменный центр фермента поворачивается в исходное состояние и отщепляет 2 иона К+ и неорганический фосфат (Рн) внутрь клетки. Затем цикл повторяется.

Установлено, что Na+/K+-обменивающая АТФ-аза чрезвычайно специфична к Na+ и не работает при замене этих ионов на какие-либо другие. В то же время фермент почти неизбирателен к К+. Этот ион легко замещается, например, Rb+, Cs+, NH3+, Tl+ и Tl3+. Таким образом, благодаря тому, что отщепившийся от АТФ фосфат соединяется с активным центром, АТФ формирует стереоспецифичную конфигурацию активного центра натриевого насоса.

12) Биоэлектрические потенциалы

электрические потенциалы, возникающие в живых клетках и тканях; показатель биоэлектрической активности, определяемой разностью электрических потенциалов между двумя точками живой ткани.

Основными видами Б. п. являются мембранный потенциал (или потенциал покоя), потенциал действия, постсинаптические потенциалы 

Потенциа́л поко́я (ПП) — мембранный потенциал возбудимой клетки в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от -55 до -100 мВ[1]. У нейронов и нервных волокон обычно составляет -70 мВ. Измеряется изнутри клетки.

13) Деформа́ция (от лат. deformatio — «искажение») — изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение. Деформации разделяют на обратимые (упругие) и необратимые (пластические, ползучести). Упругие деформации исчезают после окончания действия приложенных сил, а необратимые — остаются. В основе упругих деформаций лежат обратимые смещения атомов металлов от положения равновесия(другими словами, атомы не выходят за пределы межатомных связей); в основе необратимых — необратимые перемещения атомов на значительные расстояния от исходных положений равновесия (то есть выход за рамки межатомных связей, после снятия нагрузки переориентация в новое равновесное положение).

Пластические деформации — это необратимые деформации, вызванные изменением напряжений. Деформации ползучести — это необратимые деформации, происходящие с течением времени. Способность веществ пластически деформироваться называется пластичностью. При пластической деформации металла одновременно с изменением формы меняется ряд свойств — в частности, при холодном деформировании повышается прочность.

еформация называется упругой, если она исчезает после удаления вызвавшей её нагрузки, и пластической, если после снятия нагрузки она не исчезает (во всяком случае, полностью). Все реальные твёрдые тела при деформации в большей или меньшей мере обладают пластическими свойствами. При некоторых условиях пластическими свойствами тел можно пренебречь, как это и делается в теории упругости. Твёрдое тело с достаточной точностью можно считать упругим, то есть не обнаруживающим заметных пластических деформаций, пока нагрузка не превысит некоторого предела (предел упругости).

Природа пластической деформации может быть различной в зависимости от температуры, продолжительности действия нагрузки или скорости деформации. При неизменной нагрузке, приложенной к телу, деформация изменяется со временем; это явление называетсяползучестью. С возрастанием температуры скорость ползучести увеличивается. Частными случаями ползучести являются релаксация и упругое последействие. Одной из теорий, объясняющих механизм пластической деформации, является теория дислокаций в кристаллах.

Механическое напряжение — это мера внутренних сил, возникающих в деформируемом теле под влиянием различных факторов. Механическое напряжение в точке тела определяется как отношение внутренней силы к единице площади в данной точке рассматриваемого сечения.

Напряжения являются результатом взаимодействия частиц тела при его нагружении. Внешние силы стремятся изменить взаимное расположение частиц, а возникающие при этом напряжения препятствуют смещению частиц, ограничивая его в большинстве случаев некоторой малой величиной.

Q — механическое напряжение.

F — сила, возникшая в теле при деформации.

S — площадь.

Различают две составляющие вектора механического напряжения:

  • Нормальное механическое напряжение — приложено на единичную площадку сечения, по нормали к сечению (обозначается  ).

  • Касательное механическое напряжение — приложено на единичную площадку сечения, в плоскости сечения по касательной (обозначается 

Зако́н Гу́ка — уравнение теории упругости, связывающее напряжение и деформацию упругой среды. Открыт в 1660 году английским учёным Робертом Гуком (Хуком) (англ. Robert Hooke)[1]. Поскольку закон Гука записывается для малых напряжений и деформаций, он имеет вид простой пропорциональности.

В словесной форме закон звучит следующим образом:

Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь   — сила, которой растягивают (сжимают) стержень,   — абсолютное удлинение (сжатие) стержня, а   — коэффициент упругости (или жёсткости).

Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения   и длины  ) явно, записав коэффициент упругости как

Величина   называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.

14) Потенциал покая Потенциа́л поко́я (ПП) — мембранный потенциал возбудимой клетки в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от -55 до -100 мВ..з У нейронов и нервных волокон обычно составляет -70 мВ. Измеряется изнутри клетки. Потенциал действия (ПД). Все раздражители, действующие на клетку, вызывают в первую очередь снижение ПП; когда оно достигает критического значения (порога), возникает активный распространяющийся ответ — ПД . Во время восходящей фазы ПД кратковременно извращается потенциал на мембране: её внутренняя сторона, заряженная в покое электроотрицательно, приобретает в это время положительный потенциал. Достигнув вершины, ПД начинает падать (нисходящая фаза ПД), и потенциал на мембране возвращается к уровню, близкому к исходному, — ПП. Полное восстановление ПП происходит только после окончания следовых колебаний потенциала — следовой деполяризации или гиперполяризации, длительность которых обычно значительно превосходит продолжительность пика ПД. Согласно мембранной теории, деполяризация мембраны, вызванная действием раздражителя, приводит к усилению потока Na+ внутрь клетки, что уменьшает отрицательный потенциал внутренней стороны мембраны — усиливает её деполяризацию. Это, в свою очередь, вызывает дальнейшее повышение проницаемости для Na+ и новое усиление деполяризации и т.д. В результате такого взрывного кругового процесса, т. н. регенеративной деполяризации, происходит извращение мембранного потенциала, характерное для ПД. Повышение проницаемости для Na+очень кратковременно и сменяется её падением (рис. 3), а следовательно, уменьшением потока Na+ внутрь клетки. Проницаемость для К+, в отличие от проницаемости для Na+, продолжает увеличиваться, что приводит к усилению потока К+ из клетки. В результате этих изменений ПД начинает падать, что ведёт к восстановлению ПП. Таков механизм генерации ПД в большинстве возбудимых тканей. Существуют, однако, клетки (мышечные волокна ракообразных, нервные клетки у ряда брюхоногих моллюсков, некоторые растительные клетки), у которых восходящая фаза ПД обусловлена повышением проницаемости мембраны не для ионов Na+, а для ионов Ca+. Своеобразен также механизм генерации ПД в мышечных волокнах сердца, для которых характерно длительное плато на нисходящей фазе ПД (рис. 2, б). Неравенство концентраций ионов К+ и Na+ (или Ca+) внутри и снаружи клетки (волокна) поддерживается специальным механизмом (т. н. «натриевым насосом» (См. Натриевый насос)), выталкивающим ионы Na+ из клетки и нагнетающим ионы К+ в протоплазму, требующим затраты энергии, которая черпается клеткой в процессах обмена веществ.

15) Аку́стика (от греч. ἀκούω (аку́о) — слышу) — наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием и воздействием. Акустика является одним из направлений физики (механики), исследующих упругие колебания и волны от самых низких (условно от 0 Гц) до высоких частот.

Одной из важнейших характеристик звуковых волн является спектр.

  • Спектром называется набор различных частот, образующих данный звуковой сигнал. Спектр может быть сплошным или дискретным.

Сплошной спектр означает, что в данном наборе присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.

Дискретный спектр означает наличие конечного числа волн с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал.

По типу спектра звуки разделяются на шумы и музыкальные тона.

  • Шум — совокупность множества разнообразных кратковременных звуков (хруст, шелест, шорох, стук и т.п.) — представляет собой наложение большого числа колебаний с близкими амплитудами, но различными частотами (имеет сплошной спектр).

С развитием промышленности появилась новая проблема — борьба с шумом. Возникло даже новое понятие «шумовое загрязнение» среды обитания. Шум, особенно большой интенсивности, не просто надоедает и утомляет — он может и серьезно подорвать здоровье.

  • Музыкальный тон создается периодическими колебаниями звучащего тела (камертон, струна) и представляет собой гармоническое колебание одной частоты.

С помощью музыкальных тонов создается музыкальная азбука — ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию на различных музыкальных инструментах.

  • Музыкальный звук (созвучие) — результат наложения нескольких одновременно звучащих музыкальных тонов, из которых можно выделить основной тон, соответствующий наименьшей частоте. Основной тон называется также первой гармоникой. Все остальные тоны называются обертонами. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр.

Любой звук, помимо частоты, характеризуется интенсивностью. Так реактивный самолет может создать звук интенсивностью порядка 103 Вт/м2, мощные усилители на концерте в закрытом помещении — до 1 Вт/м2, поезд метро — около 10–2 Вт/м2.

Чтобы вызвать звуковые ощущения, волна должна обладать некоторой минимальной интенсивностью, называемой порогом слышимости. Интенсивность звуковых волн, при которой возникает ощущение давящей боли, называют порогом болевого ощущения или болевым порогом.

Интенсивность звука, улавливаемая ухом человека, лежит в широких пределах: от 10–12 Вт/м2 (порог слышимости) до 1 Вт/м2 (порог болевого ощущения). Человек может слышать и более интенсивные звуки, но при этом он будет испытывать боль.

Уровень интенсивности звука L определяют по шкале, единицей которой является бел (Б) или, что гораздо чаще, децибел (дБ) (одна десятая бела). 1 Б — самый слабый звук, который воспринимает наше ухо. Эта единица названа в честь изобретателя телефона Александра Белла. Измерение уровня интенсивности в децибелах проще и поэтому принято в физике и технике.

Уровень интенсивности L любого звука в децибелах вычисляется через интенсивность звука по формуле

где I — интенсивность данного звука, I0 — интенсивность, соответствующая порогу слышимости.

В таблице 1 приведен уровень интенсивности различных звуков. Тем, кто при работе подвергается воздействию шума свыше 100 дБ, следует пользоваться наушниками.

Физическим характеристикам звука соответствуют определенные физиологические (субъективные) характеристики, связанные с восприятием его конкретным человеком. Это обусловлено тем, что восприятие звука — процесс не только физический, но и физиологический. Человеческое ухо воспринимает звуковые колебания определенных частот и интенсивностей (это объективные, не зависящие от человека характеристики звука) по-разному, в зависимости от «характеристик приемника» (здесь влияют субъективные индивидуальные черты каждого человека).

Основными субъективными характеристиками звука можно считать громкость, высоту и тембр.

  • Громкость (степень слышимости звука) определяется, как интенсивностью звука (амплитудой колебаний в звуковой волне), так и различной чувствительностью человеческого уха на разных частотах. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1000 до 5000 Гц.

При увеличении интенсивности в 10 раз уровень громкости увеличивается на 10 дБ. Вследствие этого, звук в 50 дБ оказывается в 100 раз интенсивнее звука в 30 дБ.

  • Высота звука определяется частотой звуковых колебаний, обладающих наибольшей интенсивностью в спектре.

  • Тембр (оттенок звука) зависит от того, сколько обертонов присоединяются к основному тону и какова их интенсивность и частота. По тембру мы легко отличаем звуки скрипки и рояля, флейты и гитары, голоса людей 

16)Звуковые измерения(измерения величин, характеризующих звуки и шумы по их интенсивности и по различным качественным признакам (по спектру, по нарастанию и спаданию звука во времени и др.). Главные величины, которые измеряют в акустике: Звуковое давление, Интенсивность звука, Колебательная скорость и смещение частиц, частота и период колебаний, скорость распространения, коэффициент затухания и др. Наиболее важная характеристика — звуковое давление; это связано с тем, что человеческое ухо в звуковой волне воспринимает именно это давление.

         А. и. тесно переплетаются с электрическими измерениями и проводятся главным образом электронной измерительной аппаратурой. Трудность А. и. обусловлена сложным пространственным распределением звуковых величин в помещениях, а также изменчивостью звуков и шумов во времени.

         Для измерений звукового давления служит измерительный Микрофон в воздухе или Гидрофон в воде. Приёмная часть этих приборов (собственно микрофоны и гидрофоны) преобразует поступающие звуковые сигналы (давления) в пропорциональные им электрические напряжения, которые затем подаются на вход измерительных усилителей с индикаторными приборами для отсчёта показаний. Для измерений различных шумов применяется Шумомер.

         Важный раздел А. и. — измерения в строительной и архитектурной акустике — измерения звукоизоляции перегородок и перекрытий и коэффициент звукопоглощения разных строительных покрытий (штукатурок, обивок, полов и т. д.).

Фонокардиография (от греч. phone – звук и кардиография), диагностический метод графической регистрации сердечных тонов и сердечных шумов. Применяется в дополнение к аускультации (выслушиванию), позволяет объективно оценить интенсивность и продолжительность тонов и шумов, их характер и происхождение, записать неслышимые при аускультации 3-й и 4-й тоны. Синхронная запись фонокардиограммы (ФКГ), электрокардиограммы и сфигмограммы (см. Сфигмография) центрального пульса – поликардиография – позволяет определить длительность фаз сердечного цикла, т. е. получить косвенные данные о сократительной способности миокарда. Специальный аппарат для Ф. – фонокардиограф – состоит из микрофона, усилителя электрических колебаний, системы частотных фильтров и регистрирующего устройства. Микрофон прикладывают к разным точкам грудной клетки над областью сердца. После усиления и фильтрации электрические колебания поступают на различные каналы регистрации, что позволяет избирательно фиксировать низкие, средние и высокие частоты. Запись ФКГ производят в звукоизолированном помещении при задержке дыхания на выдохе (при необходимости – на высоте вдоха) в положении лёжа, после отдыха исследуемого в течение 5 мин. На ФКГ прямая (изоакустическая) линия отражает систолические и диастолические паузы. Нормальный 1-й тон (см. рис.) состоит из 3 групп осцилляций: начальной (низкочастотной), обусловленной сокращением мышц желудочков; центральной (большей амплитуды), обусловленной закрытием митрального и трикуспидальнего клапанов; конечной (малой амплитуды), связанной с открытием клапанов аорты и лёгочной артерии и колебаниями стенок крупных сосудов. 2-й тон состоит из 2 групп осцилляций: первая (большая по амплитуде) обусловлена закрытием аортальных клапанов, вторая связана с закрытием клапанов лёгочной артерии. Нормальные 3-й (связан с мышечными колебаниями при быстром наполнении желудочков) и 4-й (встречается реже, обусловлен сокращением предсердий) тоны определяются преимущественно у детей и у спортсменов. Характерные изменения ФКГ (ослабление, усиление или расщепление 1-го и 2-го тонов, появление патологических 3-го и 4-го тонов, систолических и диастолических шумов) помогают распознавать пороки сердца и некоторые др. заболевания.

17) Нервные волокна — аксоны нервных клеток, окружённые оболочкой из олигодендроглиоцитов в ЦНС и шванновских [2] клеток в периферических нервах. Нервные волокна подразделяют на 2 типа — безмиелиновые и миелиновые. Основная функция нервных волокон — проведение ПД. Скорость проведения в миелиновых и безмиелиновых волокнах различна (рис. 5–8) и существенно зависит от диаметра нервных волокон.

Рис. 5–8. Скорость проведения возбуждения в миелиновых и безмиелиновых нервных волокнах разного диаметра [4]. Скорость проведения пропорциональна диаметру нервного волокна и в миелиновых волокнах выше, чем в безмиелиновых.

Безмиелиновые нервные волокна (рис. 5–9А). В покое мембрана аксона (осевого цилиндра) поляризована — положительно заряжена снаружи и отрицательно внутри. При ПД полярность изменяется, и наружная поверхность мембраны приобретает отрицательный заряд. Из-за разности потенциалов между возбуждённым и невозбуждёнными сегментами возникают локальные токи, деполяризующие соседний участок мембраны. Теперь этот участок становится возбуждённым и деполяризует следующий участок мембраны.

Рис. 5–9. Проведение возбуждения в нервных волокнах [7]. А — безмиелиновое волокно (электротоническое проведение), Б — миелиновое волокно (скачкообразное проведение). Миелин, полностью окружая аксон в межузловых промежутках, выступает в роли электрического изолятора, а межклеточная жидкость в перехватах Ранвье [3] — проводник.

Такое проведение известно как электротоническое, а проведение ПД — своего рода «эстафета», в которой каждый участок мембраны является сначала раздражаемым, а затем раздражающим. ПД возникает за счёт увеличения проводимости через потенциалозависимые Na+‑каналы, встроенные в аксолемму с плотностью около 110–120 каналов на 1 мкм2.

Появление так называемых рефрактерных каналов (рефрактерное состояние мембраны после прохождения ПД) предупреждает распространение возбуждения в обратном направлении.

Скорость проведения возбуждения по безмиелиновому нервному волокну в основном составляет 0,5–2 м/с и зависит от диаметра волокна: чем больше диаметр, тем выше скорость проведения ПД (см. рис. 5–8).

Миелиновое нервное волокно (рис. 5–9Б) состоит из осевого цилиндра (аксона), вокруг которого шванновские клетки образуют миелин за счёт концентрического наслаивания собственной плазматической мембраны. Миелин прерывается через регулярные промежутки (от 0,2 до 2 мм) концентрической щелью шириной около 1 мкм, это узлы, или перехваты Ранвье. Таким образом, межузловые сегменты аксона, расположенные между соседними перехватами Ранвье, содержат миелин — электрический изолятор, не позволяющий проходить через него локальным токам, поэтому ПД возникают только в перехватах Ранвье. Другими словами, ПД перемещается вдоль нервного волокна скачками, от одного перехвата Ранвье к другому перехвату (скачкообразное проведение).

Плотность потенциалозависимых Na+‑каналов аксолеммы в перехватах Ранвье — до 2000 на 1 мкм2 (в перикарионе — 50–70, в начальном сегменте аксона — 2000, в межузловых сегментах Na+‑каналы практически отсутствуют). В силу высокой плотности Na+‑каналов перехваты Ранвье характеризуются высокой возбудимостью, а локальные токи достаточно велики для возбуждения соседнего перехвата.

НЕРВНЫЙ ИМПУЛЬС- волна возбуждения, к-рая распространяется по нервному волокну и служит для передачи информации от периферич. рецепторных (чувствительных) окончаний к нервным центрам, внутри центр. нервной системы и от неё к исполнительным аппаратам - мышцам и железам. Прохождение Н. и. сопровождается переходными электрич. процессами, к-рые можно зарегистрировать как внеклеточными, так и внутриклеточными электро

18) Ультразвуковая техника начала развиваться во время Первой ми­ровой войны. Именно тогда, в 1914 г., испытывая в большом лабора­торном аквариуме новый ультразвуковой излучатель, выдающийся французский физик-экспериментатор Поль Ланжевен обнаружил, что рыбы при воздействии ультразвука забеспокоились, заметались, затем успокоились, но через некоторое время стали гибнуть. Так слу­чайно был проведен первый опыт, с которого началось исследование биологического действия ультразвука. Ультразвук - колебания и волны в упругих средах г частотой, превышаю­щей верхнюю границу слышимого звука.

Но своей природе ультразвуковые волны не отличаются от звуковых, а также инфразвуковых волн, имеющих частоту ниже нижней границы слыши­мого звука.

Деление на ультразвук, звук и инфразвук условно. В основе такого деле­ния - свойство человеческого уха воспринимать упругие колебания среды только в ограниченном диапазоне частот.

Интенсивность ультразвука, применяемого для медицинской диагностики и физиотерапии, значительно ниже его интенсивности в промышленных установках. Но все же, дает ли ультразвук вред организму при проведении медицинских обследований? Дозы ультразвука, получаемые пациентами при диагностических исследованиях, практически не оказывают никакого действия на организм пациента, а терапевтические дозы дают лечебный эффект. Фокусированный ультразвук и направленный ультразвук большой интенсивности вызывают локальное разрушение отдельных участков живой ткани. Такой ультразвук используется при хирургических вмешательствах.

С целью изучения действия и вреда ультразвука для организма были проведены многочисленные исследования на животных. Результаты этих исследований показали, что многоразовое действие ультразвука интенсивностью 1-3 Вт/см кв. вызывало нарушения в клетках нервной ткани, печени, почек и других органов. При интенсивности 5-10 Вт/см кв. патологические изменения появлялись также в мышечных волокнах и клетках крови, а увеличение дозы до 60 Вт/см кв. вызывало паралич у «озвученных» крыс. Вместе с тем было установлено, что дозы ультразвука менее 0,05 Вт/см кв. практически индифферентны для организма. Они не оказывают на него сколько-нибудь заметного воздействия.

19) Термодинамический процесс — переход термодинамической системы из одного состояния в другое, который всегда связан с нарушением равновесия системы.

 Процесс называют обратимым, если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежуточные состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализир. случай, достижимый лишь при бесконечно медленном изменении термодинамическое параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса. Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы называют необратимым.

Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы диффузия, теплопроводность, вязкое течение и др. 

20) Тело человека является источником теплового акустического излучения. Это излучение мегагерцового диапазона несет информацию о распределении глубинной температуры в теле человека и животных. Эта важная его характеристика может быть использована для диагностики и терапии, например, при гипертермии в онкологии. Чтобы произвести измерение температуры не в одной или нескольких отдельных точках организма, а получить распределение температуры внутри него, необходимо использовать принципы томографии, т.е. произвести измерения интенсивности теплового излучения, выходящего из тела в разных точках и под разными углами, а затем решить обратную математическую задачу. Теплови́зор — устройство для наблюдения за распределением температуры исследуемой поверхности. Распределение температуры отображается на дисплее (или в памяти) тепловизора как цветовое поле, где определённой температуре соответствует определённый цвет. Как правило, на дисплее отображается диапазон температуры видимой в объектив поверхности. Типовое разрешение современных тепловизоров — 0,1 °C. Более подробная информация доступна в разделе Термография.

21) Инфразву́к (от лат. infra — ниже, под) — упругие волны, аналогичные звуковым, но имеющие частоту ниже воспринимаемой человеческим ухом. За верхнюю границу частотного диапазона инфразвука обычно принимают 16—25 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд.

Природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука, поэтому инфразвук подчиняется тем же закономерностям, и для его описания используется такой же математический аппарат, как и для обычного слышимого звука (кроме понятий, связанных с уровнем звука). Инфразвук слабо поглощается средой, поэтому может распространяться на значительные расстояния от источника. Из-за очень большой длины волны ярко выражена дифракция.

Возникает при землетрясениях, во время бурь и ураганов, цунами. При помощи достаточно сильных инфразвуков (более 60 дБ) общаются между собой киты.

Техногенные источникиК основным техногенным источникам инфразвука относится мощное оборудование — станки, котельные, транспорт, подводные и подземные взрывы. Кроме того, инфразвук излучают ветряные электростанции и, в некоторых случаях, вентиляционные шахты.

Вибрация (лат. Vibratio — колебание, дрожание) — механические колебания. Вибрация — колебание твердых тел. Вибрацией называют механические ритмичные колебания упругих тел. Чаще всего под вибрацией понимают нежелательные колебания. Аритмичные колебания называют толчками.

Распространяется вибрация вследствие передачи энергии колебаний от колеблющихся частиц к соседним частицам. Эта энергия в любой момент пропорциональна квадрату скорости колебательного движения, поэтому по величине последней можно судить об интенсивности вибрации, т. е. о потоке вибрационной энергии. Поскольку скорости колебательного движения изменяются во времени от нуля до максимума, для их оценки используют не мгновенные максимальные значения, а среднеквадратичную величину за период колебания или измерения.

22) Внутренняя энергия термодинамической системы включает в себя энергию микроскопического движения и взаимодействия частиц системы, а так же их внутримолекулярную и внутриядерную энергии.

     Полная энергия системы (а, следовательно, и внутренняя энергия) также как потенциальная энергия тела в механике может быть определена с точностью до произвольной константы. Поэтому, если любые макроскопические движения в системе и взаимодействия её с внешними телами отсутствуют, можно принять "макроскопические" составляющие кинетической и потенциальной энергий равными нулю и считать внутреннюю энергию системы равной её полной энергии. Такая ситуация имеет место в случае, когда система находится в состоянии термодинамического равновесия.

     Введём характеристику состояния термодинамического равновесия - температуру. Так называется величина, зависящая от параметров состояния, например, от давления и объёма газа, и являющаяся функцией внутренней энергии системы. Эта функция обычно имеет монотонную зависимость от внутренней энергии системы, то есть растёт с ростом внутренней энергии.

     Температура термодинамических систем, находящихся в состоянии равновесия, обладает следующими свойствами:

     Если две равновесные термодинамические системы, находятся в тепловом контакте и имеют одинаковую температуру, то совокупная термодинамическая система находится в состоянии термодинамического равновесия при той же температуре.

     Если какая-либо равновесная термодинамическая система имеет одну и ту же температуру с двумя другими системами, то эти три системы находятся в термодинамическом равновесии при одной и той же температуре.

     Таким образом, температура есть мера состояния термодинамического равновесия. Для установления этой меры уместно ввести понятие теплопередачи.

     Теплопередачей называется передача энергии от одного тела к другому без переноса вещества и совершения механической работы.

     Если между телами, находящимися в тепловом контакте друг с другом, теплопередача отсутствует, то тела имеют одинаковые температуры и находятся в состоянии термодинамического равновесия друг с другом.

     Если в изолированной системе, состоящей из двух тел, эти тела находятся при разных температурах, то теплопередача будет осуществляться таким образом, чтобы энергия передавалась от более нагретого тела менее нагретому. Этот процесс будет продолжаться до тех пор, пока температуры тел не сравняются, и изолированная система из двух тел не достигнет состояния термодинамического равновесия.

     Для возникновения процесса теплопередачи необходимо создание потоков теплоты, то есть требуется выход из состояния теплового равновесия. Поэтому равновесная термодинамика не описывает процесс теплопередачи, а только его результат - переход в новое равновесное состояние. Описание самого процесса теплопередачи выполнено в шестой главе, посвящённой физической кинетике.

     В заключении необходимо отметить, что если одна термодинамическая система обладает более высокой температурой, чем другая, то она не обязательно будет обладать и большей внутренней энергией, несмотря на возрастание внутренней энергии каждой системы с повышением её температуры. Например, больший объём воды может обладать большей внутренней энергией даже при более низкой температуре, чем у меньшего объёма воды. Однако, в этом случае теплопередача (перенос энергии) будет происходить не от тела с большей внутренней энергией к телу с меньшей внутренней энергией, а наоборот, так как направление переноса энергии определяется не величинами внутренних энергий систем, а их температурами.

23) Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

оэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери двойные стенки термоса серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

[править]Связь с электропроводностью

Связь коэффициента теплопроводности   с удельной электрической проводимостью   в металлах устанавливает закон Видемана — Франца:

где   — постоянная Больцмана,   — заряд электрона.

[править]Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — урадона, из не радиоактивных газов - у ксенона).

Теплопроводность разных тканей.юююююююююююпииииии

24) Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.

25) Механические свойства биологических тканей

Рассмотрим важнейшие механические свойства биологических тканей, благодаря которым осуществляются разнообразные механические явления  – такие, как функционирование опорно-двигательного аппарата, процессы деформаций тканей и клеток, распространение волн упругой деформации, сокращения и расслабление мышц, движение жидких и газообразных биологических сред. Среди этих свойств выделяют:  – упругость – способность тел возобновлять размеры (форму или объем) после снятие нагрузок;  – жесткость – способность материала противодействовать внешней нагрузкой; эластичность – способность материала изменять размеры под действием внешних нагрузок;  – прочность – способность тел противодействовать разрушению под действием внешних сил;  – пластичность – способность тел хранить (полностью или частично) изменение размеров после снятия нагрузок;  – хрупкость – способность материала разрушаться без образования заметных остаточных деформаций;  – вязкость – динамическое свойство, которое характеризует способность тела противодействовать изменению его формы при действии тангенциальных напряжений;  – текучесть – динамическое свойство среды, которое характеризует  способность отдельных его слоев перемещаться с некоторой скоростью в пространстве относительно других слоев этой среды.  Механические свойства мышц  Основная функция мышц состоит в преобразовании химической энергии в механическую работу или силу. Главными биомеханическими показателями, характеризующими деятельность мышцы, являются: а) сила, регистрируемая на ее конце (эту силу называют натяжением или силой тяги мышцы) и б) скорость изменения длины.  При возбуждении мышцы изменяется ее механическое состояние; эти изменения называют сокращением. Оно проявляется в изменении натяжения и длины мышцы, а также других ее механических свойств (упругости, твердости и др.).  Механические свойства мышц сложны и зависят от механических свойств элементов, образующих мышцу (мышечные волокна, соединительные образования и т.п.), и состояния мышцы (возбуждения, утомления и пр.).  Понять многие из механических свойств мышцы помогает упрощенная модель ее строения – в виде комбинации упругих и сократительных компонентов. Упругие компоненты по механическим свойствам аналогичны пружинам: чтобы их растянуть, нужно приложить силу. Работа силы равна энергии упругой деформации, которая может в следующей фазе движения перейти в механическую работу. Различают: а) параллельные упругие компоненты (ПарК) – соединительнотканные образования, составляющие оболочку мышечных волокон и их пучков, и б) последовательные упругие компоненты (ПосК) – сухожилия мышцы, места перехода миофибрилл в соединительную ткань, а также отдельные участки саркомеров, точная локализация которых в настоящее время неизвестна.  Сократительные (контрактильные) компоненты соответствуют тем участкам саркомеров мышцы, где актиновые и миозиновые миофиламенты перекрывают друг друга. В этих участках при возбуждении мышцы происходит механическое взаимодействие между актиновыми и миозиновыми филаментами, приводящее к изменению натяжения и длины мышцы.  Поскольку каждая миофибрилла состоит из большого числа (n) последовательно расположенных саркомеров, то величина и скорость изменения длины миофибриллы в п раз больше, чем у одного саркомера. Сила, развиваемая каждым из них, одинакова и равна силе, регистрируемой на конце миофибриллы (подобно тому, как равны силы в каждом из звеньев цепи, к концам которой приложены растягивающие силы). Эти же самые n саркомеров, соединенные параллельно (что соответствует большему числу миофибрилл), дали бы кратное увеличение в силе, но при этом скорость изменения длины мышцы была бы той же, что и скорость одного саркомера. Поэтому при прочих равных условиях увеличение физиологического поперечника мышцы привело бы к увеличению ее силы, но не изменило бы скорости укорочения, и наоборот, увеличение длины мышцы сказалось бы положительно на скорости сокращения, но не повлияло бы на ее силу.  Покоящаяся мышца обладает упругими свойствами: если к ее концу приложена внешняя сила, мышца растягивается (ее длина увеличивается), а после снятия внешней нагрузки восстанавливает свою исходную длину. Зависимость между величиной нагрузки и удлинением мышцы непропорциональна (не подчиняется закону Гука)  Сначала мышца растягивается легко, а затем даже для небольшого удлинения надо прикладывать все большую силу (иногда мышцу в этом отношении сравнивают с вязаными вещами: если растягивать, скажем, трикотажный шарф, то вначале он легко изменяет свою длину, а затем становится практически нерастяжимым).  Если мышцу растягивать повторно через небольшие интервалы Времени, то ее длина увеличится больше, чем при однократном «содействии. Это свойство мышц широко используется в практике при выполнении упражнений на гибкость (пружинистые движения, повторные махи и т.п.).  Длина, которую стремится принять мышца, будучи освобожденной от всякой нагрузки, называется равновесной (или свободной). При такой длине мышцы ее упругие силы равны нулю. В живом организме длина мышцы всегда несколько больше равновесной и поэтому даже расслабленные мышцы сохраняют некоторое натяжение.  Для мышц характерно также такое свойство, как релаксация – снижение силы упругой деформации с течением времени. При отталкивании в прыжках с места сразу после быстрого приседания прыжок будет выше, чем при отталкивании после паузы в низшей точке подседа: после паузы упругие силы, возникшие при быстром приседании, вследствие релаксации не используются. 

26) Энтропи́я (от др.-греч. ἐντροπία - поворот, превращение) — в естественных науках мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике — мера вероятности осуществления какого-либомакроскопического состояния; в теории информации — мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит, и количество информации; в исторической науке, для экспликации феноменаальтернативности истории (инвариантности и вариативности исторического процесса). Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Существуют несколько эквивалентных формулировок второго начала термодинамики:

  • Постулат Клаузиуса: «Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему»[1] (такой процесс называется процессом Клаузиуса).

  • Постулат Томсона (Кельвина): «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона).

Эквивалентность этих формулировок легко показать. В самом деле, допустим, что постулат Клаузиуса неверен, то есть существует процесс, единственным результатом которого была бы передача тепла от более холодного тела к более горячему. Тогда возьмем два тела с различной температурой (нагреватель и холодильник) и проведем несколько циклов тепловой машины, забрав тепло   у нагревателя, отдав   холодильнику и совершив при этом работу  . После этого воспользуемся процессом Клаузиуса и вернем тепло   от холодильника нагревателю. В результате получается, что мы совершили работу только за счет отъёма теплоты от нагревателя, то есть постулат Томсона тоже неверен.

27) Обмен веществ и энергии

совокупность процессов превращения веществ и энергии, происходящих в живых организмах, и обмен веществами и энергией между организмом и окружающей средой. Обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи, отличающих живое от неживого. В обмене веществ, или метаболизме, обеспеченном сложнейшей регуляцией на разных уровнях, участвует множество ферментных систем. В процессе обмена поступившие в организм вещества превращаются в собственные вещества тканей и в конечные продукты, выводящиеся из организма. При этих превращениях освобождается и поглощается энергия.

Клеточный метаболизм выполняет четыре основные специфические функции: извлечение энергии из окружающей среды и преобразование ее в энергию макроэргических (высокоэргических) соединений в количестве, достаточном для обеспечения всех энергетических потребностей клетки; образование из экзогенных веществ (или получение в готовом виде) промежуточных соединений, являющихся предшественниками высокомолекулярных компонентов клетки; синтез белков (Белки), нуклеиновых кислот (Нуклеиновые кислоты), углеводов (Углеводы), липидов (Липиды) и других клеточных компонентов из этих предшественников; синтез и разрушение специальных биомолекул, образование и распад которых связаны с выполнением специфических функций данной клетки.

Для понимания сущности обмена веществ и энергии в живой клетке нужно учитывать ее энергетическое своеобразие. Все части клетки имеют примерно одинаковую температуру, т.е. клетка изотермична. Различные части клетки мало отличаются и по давлению. Это значит, что клетки не способны использовать в качестве источника энергии тепло, т.к. при постоянном давлении работа может совершаться лишь при переходе тепла от более нагретой зоны к менее нагретой. Т.о., живую клетку можно рассматривать как изотермическую химическую машину.

С точки зрения термодинамики живые организмы представляют собой открытые системы, поскольку они обмениваются с окружающей средой как энергией, так и веществом, и при этом преобразуют и то, и другое. Однако живые организмы не находятся в равновесии с окружающей средой и поэтому могут быть названы неравновесными открытыми системами. Тем не менее при наблюдении в течение определенного отрезка времени в химическом составе организма видимых изменений не происходит. Но это не значит, что химические вещества, составляющие организм, не подвергаются никаким превращениям. Напротив, они постоянно и достаточно интенсивно обновляются, о чем можно судить по скорости включения в сложные вещества организма стабильных изотопов и радионуклидов, вводимых в клетку в составе более простых веществ-предшественников. Кажущееся постоянство химического состава организмов объясняется так называемым стационарным состоянием, т.е. таким состоянием, при котором скорость переноса вещества и энергии из среды в систему точно уравновешивается скоростью их переноса из системы в среду. Т.о., живая клетка представляет собой неравновесную открытую стационарную систему.

37. Если диффузия осуществляется через мембрану, уравнение может быть представлено как                      J = -P · (C1- C2)  , где C1 и C2 - концентрация раствора внутри и вне клетки, P - коэффициент проницаемости мембраны для данного вещества. Коэффициент проницаемости определяется коэффициентом диффузии вещества, толщиной мембраны d и коэффициентом распределения вещества K, зависящим от растворимости вещества в органических растворителях, но не воде. P = Dk/d

Коэффициент проницаемости (permiability coefficient) - числовое выражение абсолютной, эффективной (или фазовой) проницаемости, обычно определяемое при линейном законе фильтрации (ВНИИ, 1973). Или: коэффициент пропорциональности в линейном законе фильтрации Дарси, за единицу которого принимается проницаемость такой пористой среды, при фильтрации через образец которой площадью 1 м2, длиной 1 м в перепаде давления 0,1 МПа расход жидкости вязкостью 1 мПа·с составляет 1 м3/с. Физический смысл размерности К.п. заключается в том, что он характеризует величину площади сечения каналов пористой среды, по которым в основном происходит фильтрация (Ш.К. Гиматудинов, 1971). 

38. Биоэлектрические потенциалы, электрические потенциалы, возникающие в тканях и отдельных клетках человека, животных и растений, важнейшие компоненты процессов возбуждения и торможения. Различают следующие основные виды Б. п. нервных и мышечных клеток: потенциал покоя, потенциал действия, возбуждающие и тормозные постсинаптические потенциалы, генераторные потенциалы.

Мембранные потенциалы и их ионная природа

Мембранная теория биопотенциалов была выдвинута еще в 1902 году Бернштейном. Но только в 50-х годах эта теория была по-настоящему развита и экспериментально обоснована Ходжкиным, которому принадлежат основные идеи и теории о роли ионных градиентов в возникновении биопотенциалов и о механизме распределения ионов между клеткой и средой. Сущность этой теории заключается в том, что потенциал покоя и потенциал действия являются по своей природе мембранными потенциалами, обусловленными полупроницаемыми свойствами клеточной мембраны и неравномерным распределением ионов между клеткой и средой, которое поддерживается механизмами активного переноса, локализованными в самой мембране.

39. Без электрического поля ионы в электролите движутся хаотически.

При наложении электрического поля возникает упорядоченное движение ионов электролита к электродам – перенос.

Скорость движения в электрическом поле:

40. Потенциал покоя (физиологический), разность потенциалов между содержимым клетки (волокна) и внеклеточной жидкостью; скачок потенциала локализуется на поверхностной мембране, при этом её, внутренняя сторона заряжена электроотрицательно по отношению к наружной. П. п. обусловлен неравенством концентраций, ионов Na+, К+ и Cl- по обе стороны клеточной мембраны и неодинаковой её проницаемостью для этих ионов (см. Биоэлектрические потенциалы,Деполяризация). В нервных и мышечных клетках П. п. участвует в поддержании состояния готовности молекулярной структуры мембраны к возбуждению в ответ на действие раздражителя. Все воздействия на клетку, вызывающие длительное стойкое снижение П. п. (например, нарушение обмена веществ, повышение внеклеточного содержания ионов К+, действие сильного электрического тока и т.д.), ведут к снижению возбудимости клетки или к полной утрате ею способности к генерации потенциалов действия.

Потенциал действия (физиологический), быстрое колебание мембранного потенциала, возникающее при возбуждении нервных и мышечных клеток (волокон); активный электрический сигнал, с помощью которого осуществляется передача информации в организме человека и животных. Основан на быстро обратимых изменениях ионной проницаемости клеточной мембраны (см. Биоэлектрические потенциалы), связанных с активацией и инактивацией ионных мембранных каналов. В нервных волокнах восходящая фаза П. д. связана с активацией т. н. быстрых натриевых каналов (БНК), а нисходящая фаза — с инактивацией БНК и активацией калиевых каналов (КК). На таком же механизме основана генерация П. д. в волокнах скелетных мышц позвоночных. В мышечных волокнах сердца активация БНК обеспечивает только начальный подъём П. д. Характерное же для этих волокон плато П. д. связано с активированием медленных натрий-кальциевых каналов (МНК). В мембранах волокон гладких мышц внутренних органов и сосудов позвоночных, а также мышечных волокон членистоногих (ракообразных, насекомых) и ряда нейронов моллюсков БНК не обнаружены. П. д. в этих клетках связан с активацией МНК или медленных кальциевых каналов (МКК). Нисходящая фаза П. д. обеспечивается КК.

Изучение физико-химических свойств ионных каналов важно не только для расшифровки их молекулярной структуры, но и для разработки методов управления генерацией П. д. в различных клетках. Установлено, что БНК специфически блокируются тетродотоксином (ядом японской рыбы-шар и калифорнийских саламандр), а также новокаином, кокаином и др. местными анестезирующими средствами. МНК и МКК к этим агентам нечувствительны, но блокируются ионами Mn2+, Со2+, Ni2+, La3+ и органическими соединениями — изоптином (используемым в кардиологической практике) и его дериватом Д-600. Большинство КК эффективно блокируется тетраэтиламмонием. Пусковое влияние П. д. на такие внутриклеточные процессы, как сокращение миофибрилл (в скелетных, гладких и сердечной мышцах), нейросекреция (в некоторых специализированных нейронах и нервных окончаниях) и т.д., осуществляется в результате прямого воздействия электрического импульса; на внутриклеточные структуры (выброс) ионов Ca2+ из саркоплазматической сети мышцы) и влияния на эти структуры ионов Ca2+, проникающих внутрь клетки во время П. д.

41. Токовый диполь – система из двух полюсов источника тока (истока и стока), помещенных в проводящую электролитическую среду. Дипольный момент токового диполя - это вектор, модуль которого равен произведению общего тока I текущего между истоком и стоком на расстояние L между ними D =I·L.Сердце рассматривается как суммарный токовый диполь, являющийся результатом взаимодействия большого числа элементарных диполей, которые создают одиночные волокна миокарда.

 для оценки функционального состояния органа по его электрической активности используется принцип эквивалентного генератора. Он состоит в том, что изучаемый орган, состоящий из множества клеток, возбуждающихся в различные моменты времени, представляется моделью единого эквивалентно го генератора. Считается, что этот эквивалентный генератор находится внутри организма и создает на поверхности тела электрическое иоле, которое изменяется в соответствии с изменением электрической активности изучаемого органа.

Термин "эквивалентный" означает, что распределение потенциалов на поверхности тела и их изменение во времени, порождаемое органом, должны быть близки таковым, порождаемым гипотетическим генератором. Так, например, в теории Эйнтховена сердце, клетки которого возбуждаются в сложной последовательности, представляется токовым диполем (эквивалентный генератор). Причем считается, что изменение потенциалов электрического поля на поверхности грудной клетки, вызываемое изменением электрического момента диполя, такое же, как и от работающего сердца.

Метод исследования работы органов или тканей, основанный на регистрации во времени потенциалов электрического поля на поверхности тела, называется электрографией. Два электрода приложенные к разным точкам на поверхности тела, регистрируют меняющуюся во времени разность потенциалов. Временная зависимость изменения этой разности потенциалов  называемся электрограммой. Название электрограммы указывает на органы (или ткани). Функционирование которых приводит к появлению регистрируемых изменений разности потенциалов: сердца - ЭКГ (электрокардиограмма), сетчатки глаза - ЭРГ (электроретикограмма), головного мозга – ЭЭГ (электроэнцефалограмма), мышц -ЭМГ (электромиограмма), кожи КГР (кожногальваническая реакция) и др.

В электрографии существуют две фундаментальные задачи: 1) прямая задача - расчет распределония электрического потенциала на заданной поверхности тела по заданным характеристикам эквивалентного генератора; 2)обратная задача - определение характеристик эквивалентного генератора (изучаемого органа) по измеренным потенциалам на поверхности тела. Обратная задача – Это задача клинической диагностики: измеряя и регистрируя, например, ЭКГ (или ЭЭГ), определять функциональное состояние сердца (или мозга).

42. Все сердце в электрическом отношении представляется как некоторый электрический генератор в виде реального устройства и как совокупность электрических источников в проводнике, имеющем форму человеческого тела. На поверхности проводника при функционировании эквивалентного электрического генератора будет электрическое напряжение, которое в процессе сердечной деятельности возникает на 34б поверхности тела человека. Моделировать электрическую деятельность сердца вполне допустимо, если использовать дипольный эквивалентный электрический генератор. Дипольное представление о сердце лежит в основе теории отведений Эйнтхове-на. Согласно ей сердце есть таковой диполь с дипольным моментом, который поворачивается, изменяет свое положение и точку приложения за время сердечного цикла. В. Эйнтховен предложил снимать разности биопотенциалов сердца между вершинами равностороннего треугольника, которые приближенно расположены в правой и левой руке и левой ноге. По терминологии физиологов, разность биопотенциалов, регистрируемую между двумя точками тела, называют отведением. Различают I отведение (правая рука – левая рука), II отведение (правая рука – левая нога) и III отведение (левая рука – левая нога). По В. Эйнтховену, сердце расположено в центре треугольника. Так как электрический момент диполя – сердца – изменяется со временем, то в отведениях будут получены временные напряжения, которые и называют электрокардиограммами. Электрокардиограмма не дает представления о пространственной ориентации. Однако для диагностических целей такая информация важна. В связи с этим применяют метод пространственного исследования электрического поля сердца, называемый вектор-кардиографией. Вектор-кардиограмма – геометрическое место точек, соответствующих концу вектора, положение которого изменяется за время сердечного цикла.

Слово «электрокардиограмма» с латинского языка дословно переводится следующим образом: электро — электрические потенциалы; кардио — сердце; грамма — запись. Следовательно, электрокардиограмма — это запись электрических потенциалов (электроимпульсов) сердца. Синусовый узел Сердце работает в нашем организме под руководством собственного водителя ритма, который вырабатывает электрические импульсы и направляет их в проводящую систему. Расположен водитель ритма сердца в правом предсердии в месте слияния полых вен, т.е. в синусе, и поэтому назван синусовым узлом, а импульс возбуждения, исходящий из синусового узла, называется соответственно синусовым импульсом. У здорового человека синусовый узел вырабатывает электрические импульсы с частотой 60—90 в мин, равномерно посылая их по проводящей системе сердца. Следуя по ней, эти импульсы охватывают возбуждением прилегающие к проводящим путям отделы миокарда и регистрируются графически на ленте как кривая линия ЭКГ. Следовательно, электрокардиограмма — это графическое отображение (регистрация) прохождения электрического импульса по проводящей системе сердца. Прохождение импульса по проводящей системе сердца графически записывается по вертикали в виде пиков — подъемов и спадов кривой линии. Эти пики принято называть зубцами электрокардиограммы и обозначать латинскими буквами P, Q, R, S и T. Помимо регистрации зубцов, на электрокардиограмме по горизонтали записывается время, в течение которого импульс проходит по определенным отделам сердца. Отрезок на электрокардиограмме, измеренный по своей продолжительности во времени (в секундах), называют интервалом.

43. Гальванизация - это применение с лечебной щелью постоянного электрического тока малой силы (до 50 МА) и низкого напряжения (30-80 в). В тканях организм содержится коллоиды (белки) и растворы солей. Молекулы образующих их веществ расподаются на электрически заряженные ионы: положительные Н+ К+ Na+ Са++ Mg++, и отрицательные ОН-, CL- - и др. Положительные ионы в электрическом поле движутся по направлению к катоду (-) и называются катионами, отрицательные ионы называются анионами и направляются к аноду (+). Движение электрического тока в теле человека непрямолинейно. Ток проходит через протоки потовых и сальных желез в коже. В тканях организма происходят сложные физико-химические процессы, вызывающие терапевтический эффект. Гальванический ток оказывает нормализирующее влияние на функциональное состояние центральной и вегетативной нервной системы, улучшению кроволимфообращение. Гальванизация оказывает обезболивающее, противовоспалительное, рассасывающее действие. Применяется в подострой и хронической стадии воспалительного процесса. Постоянный ток используют в лечебной практике также и для введения лекарственных веществ через кожу или слизистые оболочки. Этот метод получил название электрофореза лекарственных веществ. Для этой цели поступают так же, как и при гальванизации, но прокладку активного электрода смачивают раствором соответствующего лекарственного вещества. Лекарство вводят с того полюса, зарядом которого оно обладает: анионы вводят с катода, катионы – с анода. Гальванизацию и электрофорез лекарственных веществ можно осуществлять с помощью жидкостных электродов в виде ванн, в которые погружают конечности пациента.

44. Природа емкостных свойств тканей организма .Полное сопротивление ((импеданс) тканей организма

Ткани организма проводят не только постоянный, но и переменный ток. В организме нет таких систем, которые бы ли бы подобны катушкам индуктивности, поэтому индук тивность его близка к нулю.

Биологические мембраны (и, следовательно, весь организм) обладают емкостными свойствами, в связи с этим полное сопротивление тканей организма определяется только омическим и емкостным сопротивлениями. Наличие в биологических системах емкостных элементов подтверждается тем, что сила тока опережает п фазе приложенное напряжение. Частотная зависимость импеданса позволяет оценить жизнеспособность тканей организма, это важно знать для пересадки (транс плантации) тканей и органов. Импеданс тканей и органов зависит также и от их физиологического состояния. Так, при кровенаполнении сосудов импеданс изменяется в зависимости от состояния сердечно-сосудистой деятельности.

45. Эквивалентная электрическая схема тканей организма Импеданс тканей организма. Эквивалентная электрическая схема ткани

Ткани организма проводят не только постоянный, но и переменный ток. В организме нет таких систем, которые были бы подобны катушкам индуктивности, поэтому индуктивность его равна нулю. Биологические клетки и, следовательно, весь организм обладают емкостными свойствами, в связи с этим импеданс тканей организма определяется только омическим и емкостным сопротивлениями. Наличие в биологических системах емкостных элементов подтверждается тем, что ток опережает по фазе приложенное напряжение.

Приведем некоторые значения угла сдвига фаз (-), полученные при частоте 1 кГц для разных биологических объектов:

кожа человека, лягушки - 550;

нерв лягушки                   - 640;

мышцы кролика              - 650.

При последовательном соединении сопротивления R и емкости С импеданс:

а для угла разности фаз имеем:

при параллельном:

Омические и емкостные свойства клеток можно моделировать, используя эквивалентные электрические схемы. Рассмотрим некоторые из них.

 

 

Эта схема неудовлетворительна,  так как содержит бесконечно  большое сопротивление постоянному току и поэтому при низких  частотах  дает существенные отклонения опытных значений импеданса от расчетных.

В этой схеме при увеличении частоты  емкостное сопротивление стремится к нулю,  поэтому импеданс системы также стремится к нулю.  Это про-              тиворечит опыту:  у  живых объектов  импеданс уменьшается по мере увеличения частоты только  до  определенного значения.

Для живых клеток характерно более сложное сочетание параллельного и последовательного соединений элемент

 

 

     Импеданс тканей организма определяется  их  физиологическим состоянием. Так, при кровенаполнении сосудов импеданс изменяется в зависимости от состояния сердечно-сосудистой деятельности. Диагностический метод, основанный  на регистрации изменения импеданса тканей в процессе сердечной деятельности, называют реографией (импедансплетизмография).

     С помощью этого метода получают реограммы  головного  мозга (реоэнцефалограмма), сердца (реокардиограмма), магистральных сосудов, легких,  печени и конечностей.  Измерения обычно проводят на частотах 20  30 кГц по мостовой схеме.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]