
- •Томск – 2010 Содержание:
- •Введение
- •Автоматизированный электропривод
- •Механические характеристики электродвигателей
- •Механические характеристики производственных механизмов
- •Механическая характеристика электродвигателя и производственного механизма
- •Механика электропривода
- •Управление движением электропривода
- •Механические характеристики
- •Регулирование координат электропривода
- •3.1. Основные уравнения
- •3.4 Характеристики и режимы при последовательном возбуждении
- •3.5. Номинальный режим. Допустимые значения координат
- •3.6. Регулирование координат в разомкнутых структурах
- •3.7 Регулирование координат в замкнутых структурах
- •3.8 Технические реализации. Применения
- •Силовые схемы электропривода постоянного тока
- •3. Вентильные преобразователи напряжения постоянного тока
- •Датчики положения
- •16.8. Потенциометрические преобразователи
- •Индукционные машины систем синхронной связи - сельсины
- •16.6. Фотоэлектрические преобразователи
- •Вращающиеся трансформаторы
- •Глава 18. Системы отсчета и передачи угла
- •Датчики скорости - тахогенераторы
- •19.5. Фотоимпульсные измерители частоты вращения
- •Датчики тока и потокосцепления
- •Формирование механических характеристик электродвигателей с помощью обратных связей по выходным координатам
- •Корректирующие устройства
- •23.1. Активные корректирующие устройства
- •23.2. Пассивные корректирующие устройства
- •23.3. Цифровые корректирующие устройства
- •23.4. Параллельные корректирующие устройства
- •23.5. Нелинейные и псевдолинейные корректирующие устройства
- •28.2. Последовательные цифровые корректирующие звенья
- •28.3. Параллельные корректирующие звенья
- •28.4. Динамические регуляторы
- •Вентильные электроприводы
- •11 1. Вентильные электродвигатели систем автоматического регулирования
- •11.2. Момент вращения вентильного электродвигателя
- •11.3. Силовые схемы вентильных электроприводов
- •11.4. Передаточная функция вентильного электродвигателя
- •Лекция 13 шаговые двигатели Общие сведения о шаговых двигателях
- •Реверсивные шаговые двигатели
- •Режимы работы и характеристики
- •Силовые схемы шагового электропривода
- •9.1. Асинхронные электродвигатели систем автоматического регулирования
- •9 .2. Расчетная схема и дифференциальные уравнения
- •9.3. Уравнения состояния и структурная схема асинхронного электродвигателя
- •9.4. Передаточная функция асинхронного электродвигателя
- •9.5. Вращающий (электромагнитный) момент асинхронного
- •9.6. Режимы работы асинхронных машин
- •6.4. Автономные управляемые инверторы
- •Электропривод "РэмТэк-03"
Индукционные машины систем синхронной связи - сельсины
Общие положения
В различных отраслях промышленности, в системах автоматики и контроля часто возникает необходимость синхронного и синфазного вращения или поворота двух и более осей, механически не связанных друг с другом. Такие задачи решаются с помощью систем синхронной связи.
Различают два вида систем синхронной связи: синхронного вращения ("электрический вал"); и синхронного поворота ("передача угла").
В простейшем случае "электрический вал" может быть реализован на двух одинаковых асинхронных двигателях с фазным ротором, обмотки статора которых питаются от одной и той же сети трехфазного тока, а обмотки ротора соединены друг с другом (рис.5.1).
Рис. 5.1. Схема "электрического вала"
Системы передачи угла осуществляются с помощью специальных индукционных микромашин - сельсинов. С е л ь с и н а м и (от английского слова "selfsinchroniring") называются электрические микромашины переменного тока, обладающие свойством самосинхронизации.
Сельсины бывают трехфазные и однофазные. Т р е х ф а з н ы е сельсины конструктивно ничем не отличаются от асинхронных двигателей с фазным ротором. Однако они не получили большого распространения главным образом из-за неравенства синхронизирующих моментов при повороте ротора по полю и против поля.
О д н о ф а з н ы е сельсины конструктивно похожи на синхронные машины малой мощности, обмотка возбуждения которых питаются переменным током.
В системах автоматики "передача угла" осуществляется по двум, принципиально разным схемам: индикаторной и трансформаторной.
И н д и к а т о р н а я схема используется там, где на приемной оси небольшой момент статического сопротивления (стрелка, шкала прибора и т.п.). В этих схемах сельсин-приемник самостоятельно отрабатывает угол, заданный датчиком.
Т р а н с ф о р м а т о р н а я схема применяется в тех случаях, когда на приемной оси имеется значительный момент сопротивления. В таких схемах сельсин-приемник лишь управляет мощным силовым двигателем, осуществляющим поворот какого-то механизма.
Строго говоря, в каждой схеме должны использоваться свои сельсины: индикаторные или трансформаторные, хотя один и тот же сельсин может работать в любой из них.
Устройство сельсинов
Сельсины состоят из статора и ротора. Они имеют одну обмотку возбуждения и три, сдвинутых в пространстве на 1200 и соединенных в звезду, обмотки синхронизации. Сельсины бывают контактные и бесконтактные.
Рис.5.2. Конструктивные схемы контактных сельсинов
Магнитная система к о н т а к т н ы х сельсинов может быть неявнополюсной (рис.5.2, а,) или явнополюсной (рис.5.2, б, в). Обмотка возбуждения может располагаться как на роторе, так и на статоре. Первая конструкция более предпочтительна, т.к. имеет только два кольца вместо трех.
Большим недостатком контактных сельсинов является наличие скользящего контакта, переходное сопротивление которого может изменяться в довольно широких пределах. Это снижает точность передачи угла и уменьшает надежность работы систем синхронной связи.
Широкое распространение получили бесконтактные сельсины, не имеющие указанного недостатка.
Рис. 5.3. Конструктивная схема и магнитная цепь бесконтактного сельсина
Ротор-Р бесконтактного сельсина (рис.5.3) имеет два стальных пакета, разделенных немагнитным материалом - НМ (обычно сплавом алюминия). Пакеты ротора шихтованы в продольном направлении. Статор состоит из сердечника - С и двух колец - К. В пазах статора уложена обмотка синхронизации - ОС, выполненная по типу трехфазной. К кольцам примыкают пакеты внешнего магнитопровода - ВМ, то же шихтованных в продольном направлении. Обмотка возбуждения - ОВ выполнена в виде двух кольцевых катушек.
Магнитный поток, созданный обмоткой возбуждения, замыкается по пути, показанному на рис.5.3. Из одного пакета ротора он проходит через небольшой воздушный зазор в статор - С. Затем по его спинке проходит половину окружности и выходит в другой пакет ротора. Отражаясь от косого зазора, он по кольцу - К и внешнему магнитопроводу - ВМ снова попадает в первый пакет ротора. При повороте ротора изменяется положение потока возбуждения относительно обмоток синхронизации, поэтому ЭДС, индуцируемые в них, будут зависеть от угла поворота ротора так же, как и в контактном сельсине.
Недостатком бесконтактных сельсинов является худшее использование активных материалов. Их масса примерно в 1, 5 раза больше, чем контактных. Объясняется это большими воздушными зазорами, вследствие чего сельсины имеют значительные потоки рассеяния и большие намагничивающие токи.
Работа сельсинов в индикаторном режиме
Схема индикаторной связи приведена на рис. 5.4. Будем считать, что оба сельсина совершенно одинаковы и от одного датчика питается только один приемник.
Рис. 5.4. Индикаторная схема «передачи угла»
При питании обмоток возбуждения датчика и приемника переменным током возникают пульсирующие потоки возбуждения Фвд и Фвп, которые индуцируют в обмотках синхронизации ЭДС (Ед1,..., Еп3). Величина каждой ЭДС зависит от углового положения соответствующей обмотки относительно оси поля возбуждения. Если принять гармонический закон распределения индукции магнитного поля, то:
Здесь Еm-максимальное значение ЭДС, которое получается при соосном положении обмотки синхронизации и обмотки возбуждения. Из рис. 5.4 видно, что в любой момент времени ЭДС одноименных фаз датчика и приемника направлены встречно. Если сельсины находятся в согласованном положении, ЭДС одноименных фаз датчика и приемника равны по величине и уравновешивают друга.
При повороте датчика на угол aд равенство ЭДС нарушается. По обмоткам синхронизации и линиям связи протекают токи, которые, взаимодействуя с потоками возбуждения, создают моменты, в равной мере действующие на вал датчика и приемника. Поскольку датчик обычно фиксируется, приемник будет поворачиваться в ту же сторону и на такой же угол, ибо только при согласованном положении ЭДС вновь будут уравновешивать друг друга.
Найдем выражение синхронизирующего момента сельсинов.
Так как одноименные фазы датчика и приемника соединены встречно, то проходящий по ним ток:
где Zф-полное сопротивление обмотки синхронизации одного из сельсинов плюс половина сопротивления линии связи.
Подставляя значения ЭДС, учитывая, что
и обозначая разность углов поворота датчика и приемника aд-aпчерез угол рассогласования q, получим
Если один из сельсинов зафиксировать, а другой поворачивать на угол от 00 до 3600, то зависимость токов от угла рассогласования будет иметь вид, показанный на рис.5.5. Из формул токов и рис. 5.5 видно, что при любом угле рассогласования сельсинов сумма токов равна нулю. Поэтому в линиях связи отсутствует нулевой провод.
Рис.5.5. Зависимость токов в обмотках синхронизации в функции угла рассогласования