
- •Понятие алгоритма, его свойства.
- •Возникновение и история развития теории алгоритмов.
- •Основные определения.
- •Сравнительные оценки алгоритмов.
- •Система обозначений в анализе алгоритмов.
- •Классификация алгоритмов по виду функции трудоёмкости.
- •Асимптотический анализ функций.
- •Элементарные операции в языке записи алгоритмов.
- •Трудоемкость алгоритмов и временные оценки.
- •10. Понятия рекурсии и вычислимой функции.
- •Простейшие рекурсивные функции.
- •12. Операция суперпозиции частичных функций.
- •13. Операция примитивной рекурсии частичных функций.
- •14. Операция минимизации арифметических функций.
- •15. Частично рекурсивные функции и тезис Чёрча.
- •16. Понятие алгоритма как абстрактной машины.
- •17. Алгоритмическая машина Поста (определение, команды, принцип работы).
- •18. Алгоритмическая машина Тьюринга (определение, команды, схема функционирования).
- •19. Алгоритмически неразрешимые задачи (примеры).
- •20. Теоретический предел трудоемкости задачи.
- •21. Сложностные классы задач.
- •Класс npc (np – полные задачи)
- •Класс npc (np – полные задачи)
- •Примеры np – полных задач
- •23. Полиномиально проверяемые задачи.
- •24. Анализ алгоритма точного решения задачи о сумме
- •Формулировка задачи и асимптотическая оценка
- •V содержит 1 слагаемое вариантов;
- •V содержит 2 слагаемых вариантов;
- •V содержит 3 слагаемых вариантов;
- •Алгоритм точного решения задачи о сумме (метод перебора)
- •Анализ алгоритма точного решения задачи о сумме
Понятие алгоритма, его свойства.
Единого «истинного» определения понятия «алгоритм» нет.
Алгоритм – описание последовательности действий (план), строгое исполнение которых приводит к решению поставленной задачи за конечное число шагов.
Алгоритм - конечный набор правил, который определяет последовательность операций для решения конкретного множества задач и обладает пятью важными чертами: конечность, определённость, ввод, вывод, эффективность.
Алгоритм - всякая система вычислений, выполняемых по строго определённым правилам, которая после какого-либо числа шагов заведомо приводит к решению поставленной задачи.
Алгоритм - строго детерминированная последовательность действий, описывающая процесс преобразования объекта из начального состояния в конечное, записанная с помощью понятных исполнителю команд.
Алгоритм - последовательность действий, направленных на получение определённого результата за конечное число шагов».
Алгоритм - последовательность действий, либо приводящая к решению задачи, либо поясняющая почему это решение получить нельзя.
Алгоритм - это точная, однозначная, конечная последовательность действий, которую должен выполнить пользователь для достижения конкретной цели либо для решения конкретной задачи или группы задач за конечное число шагов.
Общее в этих определениях то, что алгоритм - это предписание. Предписание должно быть задано (закодировано) в некоторой форме. Это может быть текст - строка символов в некотором алфавите, таблица, диаграмма, упорядоченный набор пиктограмм и т.д.
Свойства алгоритмов: 1. Дискретность (алгоритм должен состоять из конкретных действий, следующих в определенном порядке) алгоритм должен представлять процесс решения задачи как последовательное выполнение
некоторых простых шагов. При этом для выполнения каждого шага алгоритма требуется конечный отрезок времени, т. е. преобразование исходных данных в результат осуществляется во времени дискретно. Можно считать, что шаги выполняются мгновенно в моменты времени t0, t1, t2…, а между этими моментами ничего не происходит.
2. Элементарность шагов означает, что объем работы, выполняемой на любом шаге, мажорируется
некоторой константой, зависящей от характеристик исполнителя алгоритмов, но не зависящей от входных данных и промежуточных значений, получаемых алгоритмом. Для численных алгоритмов такими элементарными шагами могут быть, например, сложение, вычитание, умножение, деление, сравнение двух 32-разрядных чисел, пересылка одного числа из некоторого места памяти в другое. К элементарным шагам не относится сравнение двух файлов, так как время сравнения зависит от длины файлов, а длина потенциально неограниченна
3. Детерминированност((любое действие должно быть строго и недвусмысленно определено в каждом случае) - определённость. В каждый момент времени следующий шаг работы однозначно определяется состоянием системы: алгоритм выдаёт один и тот же результат для одних и тех же исходных данных. Результаты не зависят ни от каких случайных факторов. С другой стороны, существуют вероятностные алгоритмы, в которых следующий шаг работы зависит от текущего состояния системы и генерируемого случайного числа. Однако при включении метода генерации случайных чисел в список «исходных данных», вероятностный алгоритм становится подвидом обычного.
Понятность - алгоритм для исполнителя должен включать только те команды, которые ему (исполнителю) доступны, которые входят в его систему команд.
4. Завершаемость (конечность, определённость) - при корректно заданных исходных данных алгоритм должен завершать работу и выдавать результат за конечное число шагов. С другой стороны, вероятностный алгоритм может и никогда не выдать результат, но вероятность этого равна 0.
5. Конечность (финитность, (каждое действие и алгоритм в целом должны иметь возможность завершения) алгоритма означает, что для получения результата нужно выполнить конечное число шагов, т. е. исполнитель в некоторый момент времени останавливается. Требуемое число шагов зависит от входных данных алгоритма и не мажорируется константой.
6. Массовость (один и тот же алгоритм можно использовать с разными исходными данными);- алгоритм должен быть применим к разным наборам исходных данных.
7. Результативность (отсутствие ошибок, алгоритм должен приводить к правильному результату для всех допустимых входных значениях). - завершение алгоритма определенными результатами. Если же входные данные уникальны, то алгоритм в силу свойства определенности (детерминированности) будет давать всегда один и тот же результат и само построение алгоритма теряет смысл.