
- •Introduction
- •Applications of Real-Time Systems
- •Voltage
- •Figure 7: Conversion of an Analog Signal to a 16 bit Binary Number
- •Figure 11: Schematic Representation of tmr
- •It is relatively simple to design a hardware equipment to be fault-tolerant. The following are two methods that are popularly used to achieve hardware fault-tolerance:
- •Software Fault-Tolerance Techniques
- •Types of Real-Time Tasks
- •Timing Constraints
- •Events in a Real-Time System
- •Figure 16: Delay Constraint Between Two Events el and e2
- •Examples of Different Types of Timing Constraints
- •Figure 19: Classification of Timing Constraints
- •Real-Time Task Scheduling
- •Figure 1: Relative and Absolute Deadlines of a Task
- •Figure 2: Precedence Relation Among Tasks
- •Types of Real-Time Tasks and Their Characteristics
- •Classification of Real-Time Task Scheduling Algorithms
- •Figure 5: An Example Schedule Table for a Cyclic Scheduler
- •Figure 6: Major and Minor Cycles in a Cyclic Scheduler
- •Comparison of Cyclic with Table-Driven Scheduling
- •Hybrid Schedulers
- •Event-driven Scheduling
- •Is edf Really a Dynamic Priority Scheduling Algorithm?
- •Implementation of edf
- •Figure 10: Priority Assignment to Tasks in rma
- •We now illustrate the applicability of the rma schodulability criteria through a few examples.
- •Deadline Monotonic Algorithm (dma)
- •Handling Aperiodic and Sporadic Tasks
- •Dealing With Task Jitter
- •W Good real-time task scheduling algorithms ensure fairness to real-time tasks while scheduling.
- •State whether the following assertions are True or False. Write one or two sentences to justify your choice in each case.
- •Figure 2: Unbounded Priority Inversion
- •Highest Locker Protocol(hlp)
- •Priority Ceiling Protocol (pcp)
- •Comparison of Resource Sharing Protocols
- •Handling Task Dependencies
- •Fault-Tolerant Scheduling of Tasks
- •Clocks in Distributed Real-Time Systems
- •Clock Synchronization
- •Figure 1: Centralized synchronization system
- •Cn Slave clocks
- •Commercial Real-Time Operating Systems
- •Time Services
- •Clock Interrupt Processing
- •Providing High Clock Resolution
- •Figure 2: Use of a Watchdog Tinier
- •Unix as a Real-Time Operating System
- •In Unix, dynamic priority computations cause I/o intensive tasks to migrate to higher and higher priority levels, whereas cpu-intensive tasks are made to seek lower priority levels.
- •Host-Target Approach
- •Preemption Point Approach
- •Self-Host Systems
- •Windows As a Real-Time Operating System
- •Figure 9: Task Priorities in Windows nt
- •Open Software
- •Genesis of posix
- •Overview of posix
- •Real-Time posix Standard
- •Rt Linux
- •7.8 Windows ce
- •Benchmarking Real-Time Systems
- •Figure 13: Task Switching Time Among Equal Priority Tasks
- •Real-Time Communication
- •Figure 2: a Bus Architecture
- •Figure 4: Logical Ring in a Token Bus
- •Soft Real-Time Communication in a lan
- •Figure 6: Priority Arbitration Example
- •Figure 8: Problem in Virtual Time Protocol
- •Figure 9: Structure of a Token in ieee 802.5
- •Figure 10: Frames in the Window-based Protocol
- •Performance Comparison
- •A Basic Service Model
- •Traffic Characterization
- •Figure 16: Constant Bit-Rato Traffic
- •Routing Algorithms
- •Resource Reservation
- •Resource Reservation Protocol (rsvp)
- •Traffic Shaping and Policing
- •Traffic Distortion
- •Traffic Scheduling Disciplines
- •Figure 20: Packet Service in Jittor-edd
- •Differentiated Services
- •Functional Elements of DiffServ Architecture
- •Real Time Databases
- •Isolation: Transactions are executed concurrently as long as they do not interfere in each other’s computations.
- •Real-Time Databases
- •Real-Time Database Application Design Issues
- •Temporal Consistency
- •Concurrency Control in Real-Time Databases
- •It can bo shown that pcp is doadlock froo and single blocking. Rocolloct that single blocking moans that once a transaction starts executing after being blocked, it may not block again.
- •Speculative Concurrency Control
- •Comparison of Concurrency Control Protocols
- •Commercial Real-Time Databases
- •Figure 16: Uniform Priority Assignment to Tasks of Example 15
- •Version 2 cse, iit Kharagpur
Time Services
Clocks and time services are among some of the basic facilities provided to programmers by every real-timo operating system. The time services provided by an operating system are based on a software clock called the system clock. The system clock is maintained by the operating system kernel based on the interrupts received from the hardware clock. Since hard real-timo systems usually have timing constraints that are of the order of a few micro seconds, the
system dock should have sufficiently fine resolution1 to support the necessary time services. However, designers of real-time operating systems find it very difficult to support fine resolution system clocks. In current technology, the resolution of hardware clocks is finer than a nanosecond (contemporary processor speeds exceed 3GHz). But, the clock resolution being made available by modern real-time operating systems to the programmers is only of the order of several milli seconds or worse. Let us first investigate why real-time operating system designers find it difficult to maintain system clocks with sufficiently fine resolution. We then examine various time services that are built based on the system clock, and made available to the real-time programmers.
The hardware clock in a computer periodically generates interrupts (often called time service interrupts). After each clock interrupt, the kernel updates the software clock and also performs certain other work (explained in Sec 5.1.1). A thread can get the current time reading of the system clock by invoking a system call supported by the operating system (such as the POSIX clock-gettimeO). The finer the resolution of the clock, the more frequent need to be the time service interrupts and larger is the amount of processor time the kernel spends in responding to these interrupts. This overhead places a limitation on how fine is the system clock resolution a computer can support. Another issue that caps the resolution of the system clock is that the response time of the clock-gettimeO system call is not deterministic. In fact, every system call (or for that matter every function call) invocation has some associated jitter. Remember that jitter was defined as the difference between the worst-case response time and the best case response time (see Sec. 2.3.1). The jitter is caused partly on account of interrupts having higher priority than system calls. When an interrupt occurs, the processing of a system call is stalled. The problem gets aggravated in the following situation. Also, the preemption time of system calls can vary because many operating systems disable interrupts while processing a system call. The variation in the response time (jitter) introduces an error in the accuracy of the time value that the calling thread gets from the kernel. In commercially available operating systems, jitters associated with system calls can be several milliseconds. This jitter introduces an error in the time readings obtained by a program. A software clock resolution finer than this error is therefore not meaningful.
We now examine the different activities that are carried out by a handler routine after a clock interrupt occurs. Subsequently, we discuss how sufficiently fine resolution can be provided in the presence of jitter in function calls.