Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
!!!!inform 1-48.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
128 Кб
Скачать

53. Системы счисления.

Система счисления – совокупность приемов обозначения чисел, способ записи чисел.

Система счисления называется позиционной, если значение ("вес") цифры в числе зависит не только от значения самой цифры, но и от ее позиции в записи числа.

Основание системы счисления – это:

– число различных цифр, используемых для записи чисел;

– количество единиц младшего разряда, соответствующих одной единице следующего старшего разряда.

Наиболее привычная для нас система счисления – десятичная. Для записи чисел в ней используется

10 разных цифр; единице любого разряда соответствует 10 единиц предыдущего разряда.

В двоичной системе счисления для записи чисел используется всего две цифры – 0 и 1, а единице любого разряда соответствует две единицы предыдущего разряда.

В шестнадцатеричной системе счисления используется 16 цифр: первые десять привычные арабские цифры, а для обозначения оставшихся шести цифр используются первые шесть прописных букв латинского алфавита (A, B, C, D, E, F).

54. Представление информации в компьютере

В ЭВМ применяется двоичная система счисления, т.е. все числа в компьютере представляются с помощью нулей и единиц, поэтому компьютер может обрабатывать только информацию, представленную в цифровой форме. Для преобразования числовой, текстовой, графической, звуковой информации в цифровую необходимо применить кодирование. Кодирование – это преобразование данных одного типа через данные другого типа. В ЭВМ применяется система двоичного кодирования, основанная на представлении данных последовательностью двух знаков: 1 и 0, которые называются двоичными цифрами (binary digit – сокращенно bit). Таким образом, единицей информации в компьютере является один бит, т.е. двоичный разряд, который может принимать значение 0 или 1. Восемь последовательных бит составляют байт. В одном байте можно закодировать значение одного символа из 256 возможных (256 = 2 в степени 8). Более крупной единицей информации является килобайт (Кбайт), равный 1024 байтам (1024 = 2 в степени 10). Еще более крупные единицы измерения данных: мегабайт, гигабайт, терабайт (1 Мбайт = 1024 Кбайт; 1 Гбайт = 1024 Мбайт; 1 Тбайт = 1024 Гбайт). Целые числа кодируются двоичным кодом довольно просто (путем деления числа на два). Для кодирования нечисловой информации используется следующий алгоритм: все возможные значения кодируемой информации нумеруются и эти номера кодируются с помощью двоичного кода. для представления текстовой информации используется таблица нумерации символов или таблица кодировки символов, в которой каждому символу соответствует целое число (порядковый номер). Восемь двоичных разрядов могут закодировать 256 различных символов. 

55. Непрерывная и дискретная информация.

Чтобы сообщение было передано от источника к получателю, необходима некоторая материальная субстанция - носитель информации. Сообщение, передаваемое с помощью носителя, назовем сигналом. В общем случае сигнал - это изменяющийся во времени физический процесс. Такой процесс может содержать различные характеристики (например, при передаче электрических сигналов могут изменяться напряжение и сила тока). Та из характеристик, которая используется для представления сообщений, называется параметром сигнала.

В случае, когда параметр сигнала принимает последовательное во времени конечное число значений (при этом все они могут быть пронумерованы), сигнал называется дискретным, а сообщение, передаваемое с помощью таких сигналов - дискретным сообщением. Информация, передаваемая источником, в этом случае также называется дискретной. Если же источник вырабатывает непрерывное сообщение (соответственно параметр сигнала - непрерывная функция от времени), соответствующая информация называется непрерывной. Пример дискретного сообщения - процесс чтения книги, информация в которой представлена текстом, г.е. дискретной последовательностью отдельных значков (букв). Примером непрерывного сообщения служит человеческая речь, передаваемая модулированной звуковой волной; параметром сигнала в этом случае является давление, создаваемое той волной в точке нахождения приемника - человеческого уха.

56. Методы перевода чисел из одной системы счисления в другую.

1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики.

2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики.

3. Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики.

4. Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке.

5. Для перевода десятичного числа в восьмеричную систему его необходимо последовательно делить на 8 до тех пор, пока не останется остаток, меньший или равный 7. Число в восьмеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

6. Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15. Число в шестнадцатеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

7. Чтобы перевести число из двоичной системы в восьмеричную, его нужно разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, и каждую триаду заменить соответствующей восьмеричной цифрой.

8. Чтобы перевести число из двоичной системы в шестнадцатеричную, его нужно разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, и каждую тетраду заменить соответствующей восьмеричной цифрой. 

57. Понятие дискретизации, выполнение арифметических операций с числами с фиксированной и плавающей запятой.

Дискретизация — преобразование непрерывной функции в дискретную

При вычислениях на ЭВМ действительные числа обычно представляются в форме чисел с плавающей запятой: с мантиссой g и порядком p, т. е. как g2p. В микропроцессорных системах с побайтовой отработкой мантисса обычно занимает 24 или 16 разрядов, а порядок – 8 разрядов. Представление чисел в форме с плавающей запятой и порядком обеспечивает возможность использовать больший динамический диапазон по сравнению с числами в форме с фиксированной запятой.  Умножение чисел с плавающей запятой выполняется по следующей формуле:  2p1g12p2g2 = g1 g22p1+p2, где g1, g2 – мантиссы сомножителей; p1, p2 – порядки сомножителей. Очевидно, что для выполнения операции умножения необходимо просто умножить мантиссы и сложить порядки.  Деление производится в соответствии с формулой  2p1g1 / (2p2g2) = g1/g2 2p1 – p2.  При сложении и вычитании порядки и мантиссы взаимосвязаны. Сложение (вычитание) в предположении, что 2p1g1 2p2g2 выполняется по формуле:  2p1g1 ± 2p2g2 = (g1 ± g2/2p1 – p2) 2p1. Иногда возникает необходимость в выполнении дополнительных операций нормализации результатов арифметических операций. Например, при сложении результирующая мантисса может быть слишком большой, если мантиссы слагаемых имели один и тот знак, и их суммирование привело к переполнению; или же в результате может получиться число, близкое к нулю, если мантиссы слагаемых имели разные знаки. В этих случаях результирующую мантиссу необходимо сдвигать вправо (когда она слишком велика) и влево (когда она слишком мала) до тех пор, пока самая левая единица не попадет в старший разряд. Так как сдвиг мантиссы осуществляется умножением на степень 2, то для того, чтобы сохранить то же самое значение суммы, необходимо одновременно со сдвигом корректировать порядок суммы, прибавляя или вычитая единицу при каждом сдвиге вправо или влево соответственно. 

58. Погрешности представления числовой информации.

Представление числовой информации в компьютере, как правило, влечет за собой появление погрешностей (ошибок), величина которых зависит от формы представления чисел и от длины разрядной сетки (ячейки памяти).

Абсолютная погрешность представления - разность между истинным значением входной величины А и ее значением, полученным из машинного изображения AM, т.е.:

[ A ] = A - AM.

Относительная погрешность представления – величина

Входные величины, независимо от количества значащих цифр, могут содержать грубые ошибки, возникающие из-за опечаток, некорректной постановки задачи или отсутствия более полной информации.

Максимальная абсолютная погрешность для чисел с ФТ не превышает единицы младшего разряда

Минимальная абсолютная погрешность равна нулю.

Средняя (усредненная) абсолютная погрешность не превышает половины единицы младшего разряда.

59. Представление символьной информации и десятичных чисел.

Символьная (алфавитно-цифровая) информация хранится и обрабатывается в ЭВМ в форме цифрового кода. Необходимый набор символов, предусмотренный конкретной ЭВМ, обычно включает в себя:

  • буквенно-цифровые знаки алфавита (алфавитов);

  • специальные знаки (пробел, скобки, знаки препинания и др.);

  • знаки операций.

Кроме того, в состав набора входят управляющие символы, соответствующие определенным функциям. Среди наборов символов наибольшее распространение получили знаки кода ASCII (American Standart Code for Information Interchange) – американский стандартный код обмена информацией. Восьмибитовая кодировка символов состоит из двух таблиц кодирования: базовой и расширенной. Базовая таблица построена по стандарту ASCII и одинакова для всех компьютеров. Первые 32 кода (с 0 до 31) содержат управляющие коды, с кода 32 по код 127 размещены коды символов английского алфавита, знаков препинания, цифр, арифметических операций и некоторых вспомогательных символов. Расширенная таблица относится к символам с номерами от 128 до 255 и может отличаться на компьютерах разного типа. В ней содержатся символы псевдографики, символы национального алфавита, специальные знаки.

60. Языки как способ описания объектов и процессов.

61. Представление звуковых и графических данных.

Представление графических данных в двоичном коде 

Есть два основных способа представления изображений.

Первый — графические объекты создаются как совокупности линий, векторов, точек — называется векторной графикой.

Второй — графические объекты формируются в виде множества точек (пикселей) разных цветов и разных яркостей, распределенных по строкам и столбцам, — называется растровой графикой.

Модель RGB. Чтобы оцифровать цвет, его необходимо измерить. Немецкий ученый Грасман сформулировал три закона смешения цветов:

1) закон трехмерности — любой цвет может быть представлен комбинацией трех основных цветов;

2) закон непрерывности — к любому цвету можно подобрать бесконечно близкий;

3) закон аддитивности — цвет смеси зависит только от цвета составляющих.

За основные три цвета приняты красный (Red), зеленый (Green), синий (Blue). В модели RGB любой цвет получается в результате сложения основных цветов. Каждый составляющий цвет при этом ха- рактеризуется своей яркостью, поэтому модель называется аддитивной. Эта схема применяется для создания графических образов в устройствах, излучающих свет, — мониторах, телевизорах.

Модель CMYK. В полиграфических системах напечатанный на бумаге графический объект сам не излучает световых волн. Изображение формируется на основе отраженной волны от окрашенных поверхностей. Окрашенные поверхности, на которые падает белый свет (т.е. сумма всех цветов), должны поглотить (т.е. вычесть) все составляющие цвета, кроме того, цвет которой мы видим. Цвет поверхности можно получить красителями, которые поглощают, а не излучают. Например, если мы видим зеленое дерево, то это означает, что из падающего белого цвета, т.е. суммы красного, зеленого, синего, поглощены красный и синий, а зеленый отражен. Цвета красителей должны быть дополняющими:

голубой (Cyan = В + G), дополняющий красного;

пурпурный (Magenta = R + В), дополняющий зеленого;

желтый (Yellow = R + G), дополняющий синего

Звук – это упругая продольная среда в воздушной среде. Чтобы ее представить в виде читаемом компьютером, необходимо: 1. Звуковой сигнал преобразовать в электрический аналог звука с помощью микрофона. Электрический аналог получается в непрерывной форме и не пригоден для обработки на цифровом компьютере. Чтобы перевести сигнал в цифровой код необходимо пропустить его через аналого-цифровой преобразователь. При воспроизведении происходит обратное преобразование. Во время оцифровки сигнал дискретизируется по времени и по уровню.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]