
- •Глава 3 физические методы обогащения
- •Глава 4. Физико – химические методы обогащения
- •Глава 5. Вспомогательные процессы
- •Глава 6. Контроль процессов обогащения
- •Глава 7. Практика обогащения руд и россыпей цветных металлов
- •Введение
- •Глава 1 руды и минералы цветных металлов процессы обогащения
- •1.1.Характеристика основных типов руд и минералов цветных
- •Металлов
- •1.2. Экономическая целесообразность процессов обогащения
- •1.3. Понятия о методах и схемах обогащения
- •1.4. Продукты и показатели обогащения руд
- •Глава 2 процессы подготовки руд к обогащению
- •2.1. Процессы дробления и измельчения. Общие сведения
- •2.2. Теоретические основы процессов дробления.
- •2.3. Типы дробильных машин и аппаратов, принцип их действия
- •2.3.1. Щековые дробилки
- •2.3.2. Конусные дробилки
- •Валковые дробилки
- •2.3.4. Дробилки ударного действия
- •Техническая характеристика молотковой однороторной дробилки с подвижной плитой дмн – 2100 х 1850
- •2.4. Теоретические основы процессов измельчения
- •2.5. Измельчительное оборудование
- •2.5.1. Шаровые мельницы
- •2.5.2 Стержневые мельницы
- •2.5.3. Мельницы самоизмельчения
- •2.6. Грохочение и классификация по крупности
- •2.6.1. Определение гранулометрического состава руды и продуктов обогащения
- •2.6.2. Грохочение. Основные принципы и показатели
- •2.6.3. Классификация и конструкция грохотов.
- •Техническая характеристика резонансного грохота грл -61
- •Техническая характеристика барабанного промывочного
- •2.6.4. Процессы классификации продуктов измельчения
- •2.7. Схемы рудоподготовки
- •2.7.1. Схемы дробления и грохочения
- •2.7.2. Схемы измельчения и классификации
- •2.8. Дезинтеграция и промывка
- •2.8.1. Процессы дезинтеграции и промывки
- •2.8.2. Аппараты для дезинтеграции и промывки
- •Техническая характеристика мечевой мойки мд – 3,2
- •Глава 3 Физические методы обогащения
- •3.1. Классификация физических методов обогащения
- •3.2. Гравитационные методы обогащения
- •3.2.1. Теоретические основы процессов гравитационного обогащения
- •3.2.2.. Гидравлическая классификация.
- •3.2.3.. Процесс отсадки. Отсадочные машины.
- •3.3. Процессы обогащения в безнапорной струе воды, текущей по наклонной поверхности
- •3.3.1 Обогащение на шлюзах
- •3.3.2. Обогащение на винтовых и конусных сепараторах
- •3.3.3.Обогащение на концентрационных столах
- •3.4. Обогащение в центробежных концентраторах и сепараторах
- •3.5. Обогащение в тяжелых суспензиях
- •3.6. Технология гравитационного обогащения руд и россыпей
- •3.7. Магнитные методы обогащения
- •3.7.1. Теоретические основы процессов магнитной сепарации
- •3.7.2. Магнитные и электромагнитные сепараторы
- •3.8. Электрические методы обогащения
- •3.8.1. Теоретические основы процессов электрической сепарации
- •3.8.2. Электрические сепараторы
- •3.8.3. Схемы электромагнитного и электрического обогащения
- •3.9. Специальные методы обогащения
- •Глава 4 Физико – химические методы обогащения
- •4.1. Теоретические основы процесса флотационного обогащения
- •4.2.Флотационные реагенты и механизм их действия
- •4.2.1. Реагенты – собиратели
- •4.2.2. Реагенты – модификаторы
- •4.2.3.Реагенты – пенообразователи
- •4.3. Флотационные машины, устройство, принцип действия, области применения.
- •4.4. Основы технологии флотационного обогащения руд цветных металлов
- •4.4.1. Факторы, влияющие на технологию флотации руд
- •4.4.2 .Операции и схемы флотации
- •Глава 5. Вспомогательные процессы
- •5.1. Классификация вспомогательных процессов
- •5.2. Процесс сгущения
- •5.3. Процесс фильтрования
- •5.4. Процесс сушки. Устройство и принцип действия сушильных агрегатов
- •5. 5. Пылеулавливание
- •5.6. Очистка сточных вод и оборотное водоснабжение
- •Глава 6 Контроль процессов обогащения
- •6.1. Опробование
- •6.2. Контроль и управление процессами обогащения
- •6.3. Учет на обогатительных фабриках
- •Глава 7
- •7.1. Технология медных и медно-пиритных руд
- •7.2. Обогащение медно-цинковых руд
- •7.3. Обогащение свинцовых, свинцово-цинковых и медно-свинцово-цинковых руд
- •7.4. Обогащение никелевых руд
- •7.5. Обогащегние золотосодержащих руд и россыпей
- •7.6. Обогащение оловянных и вольфрамовых руд и россыпей
- •7.7. Обогащение титансодержащих руд и россыпей
- •7.8. Обогащение литиевых и бериллиевых руд
7.4. Обогащение никелевых руд
В природе собственных никелевых минералов известно около 50 и несколько десятком минералов, содержащих двухвалентное железо и магний, в которые никель ваходит в виде изоморфной примеси. Основная масса никеля извлекается из руд в виде сульфидных и силикатных минералов, характеристика которых приведена в табл. 84
.
Таблица 84. Характеристика основных никельсодержащих минералов
Минерал |
Формула |
Содержание никеля,% |
Плотность, кг/м3 |
Твердость |
Пентландит |
( Fe, Ni)9S8 |
31,22 |
4500…5000 |
3…4 |
Пирротин |
от Fe6S9 до Fe11S12 |
от 0,25 до 14,22 |
4500…4700 |
3,5…4,5 |
Миллерит |
NiS |
64,67 |
5200…5600 |
3 …3,5 |
Никелин |
NiAs |
43,9 |
760…7900 |
5,0…5,5 |
Гарниерит |
(Ni,Mg)OsiO2·H2O |
40…46,6 |
2,27…2,93 |
2,0…3,5 |
Основное количество никеля добывается в месторождениях магматических сульфидных медно-никелевых руд, которые добываются в Норильске, на Кольском полуострове, в Канаде, Норвегии, Швеции, США. Содержание никеля в этих рудах колеблется от 0,3 до 4%, а соотношение меди и никеля в маломедистых рудах составляет от 0,5 до 0,8 и в высокомедистых – от 2 до 4.
Основные минералы в рудах этих месторождений – никеленосный пирротин, пентландит, халькопирит, магнетит, встречаются никелин, миллерит, пирит, кубанит, а также минералы платиновой группы.
В зависимости от вещественного состава и текстурных лособенностей никелевые руды подразделяются на следующие типы:
- вкрапленные при содержании никеля от 0,25 до 0,5% никеля и соотношении никеля, меди и кобальта 55…50 : 28…23 : 1;
- брекчиевидные руды ( содержание никеля 2…4% и меди 0,8…2,5%) при соотношении никеля, меди и кобальта 56 : 22 : 1;
- сплошные сульфидные, состоящие в основном из пирротина (60…80%), пентландита и халькопирита при соотношении никеля, меди и кобальта 25…35 : 14 : 1.
Силикатные никелевые руды характеризуются невысоким содержанием никеля ( до 1%) при соотношении никеля и кобальта 20…30 : 1. Добыча никеля из силикатных руд в общем производствеиникеля составляет не более 15…20%, причем перерабатываются эти руды без предварительного обогащения.
По своим флотационным свойствам никелевые минералы – сульфиды и арсениды близки к халькопириту и пириту. Пентландит флотируется значительно лучше пирритина, причем флотируемость этих минералов сильно зависит от степени изоморфного замещения никеля железом и кобальтом, а также от степени окисленности. Эти минералы, особенно пирритин, окисляются значительно быстрее других сульфидов, что используется при их селективной флотации из медно-никелевых руд. Флотируемость этих минералов значительно улучшается при активации медным купоросом, а введение сернистого натрия перед активацией медным купоросом повышает сорбцию ксантогената на поверхности пирротина и пентландита и их флотируемость.
В настоящее время обогащаются практическитолько сульфидные медно-никелевые руды, которые при содержании никеля более 2% могут направляться непосредственно в плавку без предварительного обогащения.
Выбор метода обогащения медно-никелевых руд зависит от содержания меди и никеля в руде и от их соотношения в получаемом коллективном концентрате.
Основные трудности обогащения сульфидных медно-никелевых руд связаны с разделением сульфидов меди и никеля. Это объясняется прежде всего изменением флотационных свойств сульфидов никеля в зависимости от содержания в них железа, тонкой взаимной вкрапленностью сульфидов, трудностью депрессии сульфидов никеля при их активации медным купоросом и сложным составом минералов вмещающих пород, особенно алюмосиликатов. Для депрессии таких флотоактивных силикатов, как тальк, хлорит, серицит, применяется карбоксиметилцеллюлоза ( КМЦ) при рН 7,5…9,5, иногда в сочетании с жидким стеклом.
Вкрапленные медно – никелевые руды обогащаются по схеме коллективной флотации с получением коллективного медно-никелевого концентрата, который в зависимости от соотношения меди и никеля селективно разделяют на медный и никелевый ( при соотношении больше 2) или подвергают плавке с получением файнштейна ( при соотношении меньше 2), который затем разделяется флотацией на медный и никелевый ( метод И.Н. Масляницкого).
По схеме коллективной флотации ( рис.208) обогащаются руды на обогатительной фабрике комбината «Печенганикель», где перерабатываются бедные медно-никелевые руды, отличающиеся весьма тонкой и неравномерной вкрапленностью рудных минералов, повышенным содержанием неизвлекаемого никеля, связанного как с эмульсионной вкрапленностью сульфидов, так и с наличием силикатных форм никеля. Наиболее труднообогатимыми рудами являются оталькованные. Рудные минералы представлены пентландитом, пирротином, халькопиритом, магненитом. Никельна 74…89% связан с пентландитом и на 11…26% с пирротином. Породообразующие минералы представлены оливином, пироксеном, серпентином, серицитом, тальком, хлоритом.
После измельчения в шаровых мельницах до крупности 45…50% класса минус 0,074 мм пульпа поступает на межцикловую флотацию, куда подается медный купорос бутиловый ксантогенат и дитиофосфат. Хвосты межцикловой флотации доизмельчаются в мельницах в присутствии ксантогената до крупности 80…85% класса минус 0,074 мм при подаче медного купороса и бутилового дитиофосфата. Концентраты перечищаются в присутствии КМЦ ( 400…560 г/т) для депрессии минералов вмещающих пород. Получаемый коллективный медно-никелевый концентрат содержит 5,8…6% никеля, 2,3…2,75% меди при извлечении меди и никеля по 75%.
Готовый медно-никелевый концентрат после сгущения и обжига направляется на плавку с получением файнштейна. При медленном охлаждении файнштена в течение 36…40 часов выделяются крупнозернистые соединения халькозина Cu2S и хизлевудита Ni3S2 , а также металлического медно-никелевого сплава. После измельчения файнштейн флотируют в сильнощелочной среде при рН 12 при подаче едкого натрия и соды. При подаче бутилового ксантогената в пенный продукт извлекаются сульфиды меди, а в камерном продукте остаются сульфиды никеля и медно-никелевый сплав. Медный концентрат содержит до 68…69% меди и до 8…9% никеля, а никелевый концентрат – 64…67% никеля и 4…8% меди, при извлечении никеля 96% и меди 92%.
По схеме селективной флотации ( рис.209) перерабатываются сплошные богатые руды месторождения Талнах на Талнахской обогатительной фабрике ОАО «ГМК « Норильский никель». Эти руды характеризуются различной флотационной активностью сульфидных минералов, которые можно расположить по уменьшению флотируемости в следующей последовательности: халькопирит ( талнахит, моихукит, кубанит ), пентландит и никеленосный пирротин, пирротин. Селективная флотация медных и никелевых минералов происходит прежде всего за счет различной скорости окисления сульфидной поверхности. Никелевые сульфидные минералы хорошо и быстро окисляются, в то время как халькопирит окисляется значительно медленнее. В известковой среде при рН 10,5 сначала флотируются медные сульфидные концентраты, сожержащие 27,5% меди и 1% никеля, а затем пентдадит с пирротином в коллективный концентрат. Этот концентрат затем направляется на никелевую флотацию, где в пенный продукт извлекается никелевый концентрат, содержащий 9,2% никеля и 4,5% меди. Получаемый пирротиновый концентрат, в котором содержится 2,2% никеля и 1,5% меди , направляется на гидрометаллургическое производство, где концентрат подвергается автоклавно-окислительному выщелачиванию при Т:Ж=1:1. температуре 108°С, давлении 150 кПа в присутствии воздуха обогащенным кислородом. При этом все сульфидные минералы окисляются и выщелачиваются. С образованием элементной серы и сульфаьлв меди и железа.. После агрегации серы при температуре 135…140°С, давлении 40…50 кПа и рН 3 осаждаются сульфиды меди медными гранулами и металлизованными железными окатышами. При последующей серосульфидной флотации выделяется серосульфидный концентрат, который после дезинтеграции в присутствии ПАВ, направляется на серную флотацию, которая проводится в присутствии ДП-4 ( ). Полученный сульфидный концентрат, содержащий 8% никеля, 3…5% меди и не более 5% элементной серы, направляется на плавку. Серный концентрат с содержанием элементной серы более 70% направляется на автоклавную выплавку серы, которая также проводится в присутствии ПАВ.