
- •Глава 3 физические методы обогащения
- •Глава 4. Физико – химические методы обогащения
- •Глава 5. Вспомогательные процессы
- •Глава 6. Контроль процессов обогащения
- •Глава 7. Практика обогащения руд и россыпей цветных металлов
- •Введение
- •Глава 1 руды и минералы цветных металлов процессы обогащения
- •1.1.Характеристика основных типов руд и минералов цветных
- •Металлов
- •1.2. Экономическая целесообразность процессов обогащения
- •1.3. Понятия о методах и схемах обогащения
- •1.4. Продукты и показатели обогащения руд
- •Глава 2 процессы подготовки руд к обогащению
- •2.1. Процессы дробления и измельчения. Общие сведения
- •2.2. Теоретические основы процессов дробления.
- •2.3. Типы дробильных машин и аппаратов, принцип их действия
- •2.3.1. Щековые дробилки
- •2.3.2. Конусные дробилки
- •Валковые дробилки
- •2.3.4. Дробилки ударного действия
- •Техническая характеристика молотковой однороторной дробилки с подвижной плитой дмн – 2100 х 1850
- •2.4. Теоретические основы процессов измельчения
- •2.5. Измельчительное оборудование
- •2.5.1. Шаровые мельницы
- •2.5.2 Стержневые мельницы
- •2.5.3. Мельницы самоизмельчения
- •2.6. Грохочение и классификация по крупности
- •2.6.1. Определение гранулометрического состава руды и продуктов обогащения
- •2.6.2. Грохочение. Основные принципы и показатели
- •2.6.3. Классификация и конструкция грохотов.
- •Техническая характеристика резонансного грохота грл -61
- •Техническая характеристика барабанного промывочного
- •2.6.4. Процессы классификации продуктов измельчения
- •2.7. Схемы рудоподготовки
- •2.7.1. Схемы дробления и грохочения
- •2.7.2. Схемы измельчения и классификации
- •2.8. Дезинтеграция и промывка
- •2.8.1. Процессы дезинтеграции и промывки
- •2.8.2. Аппараты для дезинтеграции и промывки
- •Техническая характеристика мечевой мойки мд – 3,2
- •Глава 3 Физические методы обогащения
- •3.1. Классификация физических методов обогащения
- •3.2. Гравитационные методы обогащения
- •3.2.1. Теоретические основы процессов гравитационного обогащения
- •3.2.2.. Гидравлическая классификация.
- •3.2.3.. Процесс отсадки. Отсадочные машины.
- •3.3. Процессы обогащения в безнапорной струе воды, текущей по наклонной поверхности
- •3.3.1 Обогащение на шлюзах
- •3.3.2. Обогащение на винтовых и конусных сепараторах
- •3.3.3.Обогащение на концентрационных столах
- •3.4. Обогащение в центробежных концентраторах и сепараторах
- •3.5. Обогащение в тяжелых суспензиях
- •3.6. Технология гравитационного обогащения руд и россыпей
- •3.7. Магнитные методы обогащения
- •3.7.1. Теоретические основы процессов магнитной сепарации
- •3.7.2. Магнитные и электромагнитные сепараторы
- •3.8. Электрические методы обогащения
- •3.8.1. Теоретические основы процессов электрической сепарации
- •3.8.2. Электрические сепараторы
- •3.8.3. Схемы электромагнитного и электрического обогащения
- •3.9. Специальные методы обогащения
- •Глава 4 Физико – химические методы обогащения
- •4.1. Теоретические основы процесса флотационного обогащения
- •4.2.Флотационные реагенты и механизм их действия
- •4.2.1. Реагенты – собиратели
- •4.2.2. Реагенты – модификаторы
- •4.2.3.Реагенты – пенообразователи
- •4.3. Флотационные машины, устройство, принцип действия, области применения.
- •4.4. Основы технологии флотационного обогащения руд цветных металлов
- •4.4.1. Факторы, влияющие на технологию флотации руд
- •4.4.2 .Операции и схемы флотации
- •Глава 5. Вспомогательные процессы
- •5.1. Классификация вспомогательных процессов
- •5.2. Процесс сгущения
- •5.3. Процесс фильтрования
- •5.4. Процесс сушки. Устройство и принцип действия сушильных агрегатов
- •5. 5. Пылеулавливание
- •5.6. Очистка сточных вод и оборотное водоснабжение
- •Глава 6 Контроль процессов обогащения
- •6.1. Опробование
- •6.2. Контроль и управление процессами обогащения
- •6.3. Учет на обогатительных фабриках
- •Глава 7
- •7.1. Технология медных и медно-пиритных руд
- •7.2. Обогащение медно-цинковых руд
- •7.3. Обогащение свинцовых, свинцово-цинковых и медно-свинцово-цинковых руд
- •7.4. Обогащение никелевых руд
- •7.5. Обогащегние золотосодержащих руд и россыпей
- •7.6. Обогащение оловянных и вольфрамовых руд и россыпей
- •7.7. Обогащение титансодержащих руд и россыпей
- •7.8. Обогащение литиевых и бериллиевых руд
5. 5. Пылеулавливание
В процессах дробления, грохочения, при сухих методах обогащения, при сушке и транспортировке сухих материалов происходит выделение пыли, которая улавливается в местах ее выделения. Твердые минеральные частицы затем выделяются из потоков воздуха и газа. Пылеулавливание , таким образом, имеет большое значения для создания благоприятных санитарно- гигиеническимх условий труда в отделениях и цехах обогатительных предприятий и способствует повышению извлечения ценных металлов за счет выделения их из газов.
На обогатительных фабриках в местах выделения пыли устанавливаются герметические укрытия, из которых отсасывается пылесодержащий воздух, направляемый на очистку. Особенно большое количество пыли выделяется из дымовых газов при сушке концентратов.
Выбор способа пылеулавливания и типа пылеулавливающего устройства зависит прежде всего от крупности выделяемых частиц, требуемой степени очистки и особенностей агрегатов, выделяющих пыль.
Крупные частицы пыли размером от 0,1 до 0,5 мм выделяются из потока воздуха или газа в пылевых камерах или циклонах при небольших скоростях движения этих потоков.. Частицы пыли размером от 0,01 до 0,1 мм улавливаются в батарейных циклонах и мокрых пылеуловителях.Тонкие частицы пыли крупностью от 0,01мм до 0,0001 м меньше могут выделяться в рукавных фильтрах, мокрых пылкуловиятелях и электрофильтрах.
Эффективность пылеулавливания определяетмся по формуле
Е = (βисх – βоч)· 100/βисх ,
Где βисх и βоч – содержание пылив исходном и очищенном воздухе, мг/м3
Пылевые или пылеосадительные камеры представляют собой камеру прямоугольной формы с пирамидальным днищем или воронкой. Поперечное сечение камеры во много раз больше сечения воздуховода, по которому падается воздух. Поэтому скорость потока воздуха резко уменьшаетсякрупные частицы оседают в бункере, а воддух с тонкой пылью выносится в следующий пылеулавливающий аппарат. Эффективность улавливания пыли в пылевых камерах составляет всего 30…40%, поэтому устанавливаются они для предварительной очистки воздуха от частиц крупной пыли.
В циклонах улавливаются частицы крупностью до 5 мкм под действием центробежной силы. Циклон для улавливания сухой пыди слстоит из цилиндрической и конической части ( рис. 191).
Р
ис.
191. Циклон для улавливания пыли
Запыленный воздух или газ подается по трубопроводу со скоростьюдо 20…25 м/с в цилиндричекую часть циалона по касательной к его внутренней поверхности и получает вращательное движение. По действием центробежной силы твердые частицы оседают на стенках циклона, перемещаются по спирали к конической части и разгружаются в ее нижней части через насадку. Очищенный воздух или газ удаляются через верхний патрубок.
Эффективность очистки воздуха зависит от диаметра циклона, который , как правило более 1 м, и для циклонов диаметром 2…3 м достигает 90…92%.
Циклоны небольшого диаметра ( 100…250 мм) в количестве от 6 до 60 штук объединяются в батарею и работают параллельно.( рис. 192)
Р
ис.
192. Батарейный циклон
1 – корпус; 2 ,4 – камеры газораспределения; 5 – циклонные элементы; 6 - пылесборник
Поступающий газ, содержащий пыль, подается одновременно во все батарейные циклоны со скоростью 10…12 м/с. Пыль из циклонов поступает в общий пылесборник. Откуда разгружаются через затвор. Батарейные циклоны обеспечивают выделение частиц крупностью до 5 мкм с эффективностью 65…85% и частиц крупностью 10…20 мкм с эффективностью от 85…95%.
Большое распространение на обогатительных фабриках получили рукавные фильтры, в которых отделение пыли осуществляется через пористую перегородку и электрофильтры, в которых выделение пыли основано на заряжении частиц в неоднородном электрическом поле и осаждение их на электроде противоположного знака заряда.
В рукавных фильтрах фильтрующие перегородки представлены в виде руковов, изготовленных из различных тканей ( шерстяных, хлопчатобумажных синтетических и др.). Верхняя часть руковов закрепляется на встряхивающем механизме, который каждые 3…8 минкт стряхивает осевшую на внутренней стороне пыль в пылеприемник. В момент встряхивания автоматически отключается подача пылесодержащего воздуха или газа. Для очистки ткани от накопившейся пыли подается сжатый воздух в направлении, противоположном направлении подачи запыленного воздуха.
В рукавных фильтрах число секций колеблется от 4 до 10 при количестве руковов диаметром 220 мм в секции – 14 и общей площади фильтрования 112…280 м2. Фильтры отличаются высокой эффективностью очистки ( 98%) от частиц различной крупной крупности при ее высокой концентрации в очищаемом воздухе.
В электрофильтрах (рис.193) частицы пыли заряжаются в поле коронного разряда, где они получают электрический заряд и осаждаются на электродах противоположного заряда.
Р
ис.
193. Схема электрофильтра
1 – источник электропитания; 2 – рама; 3 – изоляторы; 4 – газоход; 5 – осадительные электроды; 7 – решетка; 8 – камера электрофильтра 9 – бунке для пыли; 10 - газоход
При встряхивании электродов пыль сбразывается в пылевой сборник. Осадительные электроды в электрофильтрах выполняются в виде стальных пластин или труб диаметром 150…300 мм и длиной 3…4 м. Коронирующие электроды ( проволока диаметром 1,5…2 мм из нихрома) подвешиваются к изолированной раме между пластинами или трубами и находятся под напряжением 50…60 кВ. Все электроды для предотвращения колебания в нижней части также крепятся к раме. Электрофильтры работают на постоянном токе от источника высоковольтного питания.
Запыленный воздух или газ подается в нижнюю часть корпуса по газоходу под решетку и равномерно распределяется равномерно по объему камеры. Заряженные частицы пыли осаждаются на пластинах или внутренней поверхности труб и периодически встряхиваются в пылевой бункерпри помощи специального кулачкового механизма.
Достоинством электрофильтров является их высокая степень очистки, достигающая 99,5% при расходе электроэнергии всего 0,1…0,8 кВт на 1000 м3 запыленного воздуха или газа, возможность работать при температуре воздуха или газа до 170˚С , широкий диапазон концентрации пыли и полная автоматизация их работы. Недостатком электрофильтров является их большие габаритные размеры, высокая стоимость и сложность всей пылеулавливающей установки.
Устанавливаются электрофильтры, как правило, во второй ступени пылеулавливания после циклонов.
Улавливание пыли поизводится также в мокрых пылеуловителях различной конструкции от простых мокрых фильтров – барботеров до скруббера Вентури.
Очищенный воздух от пыли затем удаляется в атмосферу.