
- •Глава 3 физические методы обогащения
- •Глава 4. Физико – химические методы обогащения
- •Глава 5. Вспомогательные процессы
- •Глава 6. Контроль процессов обогащения
- •Глава 7. Практика обогащения руд и россыпей цветных металлов
- •Введение
- •Глава 1 руды и минералы цветных металлов процессы обогащения
- •1.1.Характеристика основных типов руд и минералов цветных
- •Металлов
- •1.2. Экономическая целесообразность процессов обогащения
- •1.3. Понятия о методах и схемах обогащения
- •1.4. Продукты и показатели обогащения руд
- •Глава 2 процессы подготовки руд к обогащению
- •2.1. Процессы дробления и измельчения. Общие сведения
- •2.2. Теоретические основы процессов дробления.
- •2.3. Типы дробильных машин и аппаратов, принцип их действия
- •2.3.1. Щековые дробилки
- •2.3.2. Конусные дробилки
- •Валковые дробилки
- •2.3.4. Дробилки ударного действия
- •Техническая характеристика молотковой однороторной дробилки с подвижной плитой дмн – 2100 х 1850
- •2.4. Теоретические основы процессов измельчения
- •2.5. Измельчительное оборудование
- •2.5.1. Шаровые мельницы
- •2.5.2 Стержневые мельницы
- •2.5.3. Мельницы самоизмельчения
- •2.6. Грохочение и классификация по крупности
- •2.6.1. Определение гранулометрического состава руды и продуктов обогащения
- •2.6.2. Грохочение. Основные принципы и показатели
- •2.6.3. Классификация и конструкция грохотов.
- •Техническая характеристика резонансного грохота грл -61
- •Техническая характеристика барабанного промывочного
- •2.6.4. Процессы классификации продуктов измельчения
- •2.7. Схемы рудоподготовки
- •2.7.1. Схемы дробления и грохочения
- •2.7.2. Схемы измельчения и классификации
- •2.8. Дезинтеграция и промывка
- •2.8.1. Процессы дезинтеграции и промывки
- •2.8.2. Аппараты для дезинтеграции и промывки
- •Техническая характеристика мечевой мойки мд – 3,2
- •Глава 3 Физические методы обогащения
- •3.1. Классификация физических методов обогащения
- •3.2. Гравитационные методы обогащения
- •3.2.1. Теоретические основы процессов гравитационного обогащения
- •3.2.2.. Гидравлическая классификация.
- •3.2.3.. Процесс отсадки. Отсадочные машины.
- •3.3. Процессы обогащения в безнапорной струе воды, текущей по наклонной поверхности
- •3.3.1 Обогащение на шлюзах
- •3.3.2. Обогащение на винтовых и конусных сепараторах
- •3.3.3.Обогащение на концентрационных столах
- •3.4. Обогащение в центробежных концентраторах и сепараторах
- •3.5. Обогащение в тяжелых суспензиях
- •3.6. Технология гравитационного обогащения руд и россыпей
- •3.7. Магнитные методы обогащения
- •3.7.1. Теоретические основы процессов магнитной сепарации
- •3.7.2. Магнитные и электромагнитные сепараторы
- •3.8. Электрические методы обогащения
- •3.8.1. Теоретические основы процессов электрической сепарации
- •3.8.2. Электрические сепараторы
- •3.8.3. Схемы электромагнитного и электрического обогащения
- •3.9. Специальные методы обогащения
- •Глава 4 Физико – химические методы обогащения
- •4.1. Теоретические основы процесса флотационного обогащения
- •4.2.Флотационные реагенты и механизм их действия
- •4.2.1. Реагенты – собиратели
- •4.2.2. Реагенты – модификаторы
- •4.2.3.Реагенты – пенообразователи
- •4.3. Флотационные машины, устройство, принцип действия, области применения.
- •4.4. Основы технологии флотационного обогащения руд цветных металлов
- •4.4.1. Факторы, влияющие на технологию флотации руд
- •4.4.2 .Операции и схемы флотации
- •Глава 5. Вспомогательные процессы
- •5.1. Классификация вспомогательных процессов
- •5.2. Процесс сгущения
- •5.3. Процесс фильтрования
- •5.4. Процесс сушки. Устройство и принцип действия сушильных агрегатов
- •5. 5. Пылеулавливание
- •5.6. Очистка сточных вод и оборотное водоснабжение
- •Глава 6 Контроль процессов обогащения
- •6.1. Опробование
- •6.2. Контроль и управление процессами обогащения
- •6.3. Учет на обогатительных фабриках
- •Глава 7
- •7.1. Технология медных и медно-пиритных руд
- •7.2. Обогащение медно-цинковых руд
- •7.3. Обогащение свинцовых, свинцово-цинковых и медно-свинцово-цинковых руд
- •7.4. Обогащение никелевых руд
- •7.5. Обогащегние золотосодержащих руд и россыпей
- •7.6. Обогащение оловянных и вольфрамовых руд и россыпей
- •7.7. Обогащение титансодержащих руд и россыпей
- •7.8. Обогащение литиевых и бериллиевых руд
5.4. Процесс сушки. Устройство и принцип действия сушильных агрегатов
После фильтрования кек, содержащий от 10 до 20% влаги, направляется на последнюю стадию обезвоживания – сушку, при которой удаление влаги происходит путем испарения влаги в окружающую среду при нагревании. Этот процесс дорогой, поэтому применяется лишь тогда, когда это рационально и экономично, например, для предотвращения смерзаемости концентратов в зимнее время, при хранении и перевозке их на дальние расстояния.
Процесс сушки зависит от влажности, вида содержащейся в материале влаги, гранулометрического состава материала, параметров среды, кондиций по влажности после сушки.
Для сушки рудных концентратов применяются агрегаты, которые называются сушилками. В зависимости от формы агрегата они подразделяются на подовые, шахтные, трубы-сушилки, барабанные, распылительные и печи-сушилки кипящего слоя. В сушилках прямого действия происходит непосредственное контактирование высушиваемого материала с теплоносителем. К ним относятся барабанные сушилки, печи кипящего слоя, распылительные и трубы сушилки. В сушилках непрямого действия нагрев материала осуществляется через разделительную горячую стенку ( сушилки с вращающимся барабаном и шнековые сушилки). В прямоточных сушилках материал и теплоноситель движутся в одном направлении, а в противоточных движение их происходит в противоположных направлениях.
Наибольшее распространение в практике обогащения руд цветных и редких металлов применяются барабанные прямоточные сушилки, использующие в качестве теплоносителя природный газ.
Барабанная сушилка (рис. 189) представляет собой цилиндрический барабан диаметром 1,2…3,5 м и длиной от 6 до 27 м, установленный под углом 2…4˚ в сторону разгрузки материала. Барабан вращается с частотой 1…6 мин-1.
Рис. 189. Схема барабанной сушилки прямого действия
Барабан имеет внутренние насадочные устройства для равномерного перемешивания материала и его интенсивного контактирования с теплоносителем.
Барабан при помощи неподвижно закреплнггых на нем бандажей опирается на ролики и приводится в движение от электродвигателя через редуктор и зубчатую шестерню. В качестве теплогенератора используются выносные прямоугольные топки объемом от 6 до 90 м3, в которых при сжигании топлива получают теплоноситель. Исходный материал обычно ленточным конвейером подается в загрузочное устройство, выполненного в виде наклонного ( под углом 60…80˚) цилиндрического или прямоугольного желоба. При вращении барабана материал подхватывается насадками и поднимается вверх, откуда при падении вниз соприкосается с теплоносителем, температура которого на входе составляет 600…900˚С при сушке сульфидных концентратов. При этом материал передвигается к нижнему концу барабана, где установлено разгрузочное устройство, представляющее собой камеру, в верхней части которой имеется газоходная система для удаления отработанных газов, а в нижней части- патрубок для разгрузки высушенного материала на ленточный конвейер, подающий высушенный материал на склад готовой продукции. Влажность получаемого материала обычно составляет 3…5%. Температура отходящих газов обычно составляет 100…200˚С.
Достоинством барабанных сушилок является большая производительность, высокий тепловой коэффициент полезного действия и небольшой расход электроэнергии (0,02…0,1 кВт·ч/кг испаряемой влаги. Существенным недостатком этих сушилок является большой пылевынос, который может достигать 20% от количества высушенного материала. Для улавливания этой пыли устанавливаются одно- и двухступенчатые системы, включающие циклоны, скрубберы и электрофильтры. В качестве дымососных установок используются вентиляторы и дымососы. На обогатительных фабриках применяются барабанные прямоточные сушилки, выпускакмые, например, заводом «Прогресс» техническая характеристика которых представлена в табл. 78.
Таблица 78. Техническая характеристика барабанных сушилок
Тип |
Диаметр барабана,м |
Длина барабана, м |
Мощность двигателя, кВт |
Габаритные размеры. мм |
Масса, кг |
|||
длина |
ширина |
высота |
||||||
БН -1,0 |
1,0 |
4 ; 6 |
4 |
5300;7300 |
2280 |
2150 |
4960;5430 |
|
БН – 1,2 |
1,2 |
6; 8; 10 |
7,5 |
7350;9350; 11400 |
2550 |
2350 |
7070;7660; 8230 |
|
БН – 1,6 |
1,6 |
8 ;10; 12 |
15; 30 |
9700;11700; 13700 |
3300 |
2900 |
13450;14330; 16360 |
|
БН – 2,0 |
2,0 |
8 ;10; 12 |
30 |
9900;11950; 13950 |
3850 |
3600 |
21920;23542; 24960 |
|
БН – 2,2 |
2,2 |
10;12; 14 |
30 |
12100;14100 16150 |
3950 |
3750 |
27410;29410; 31410 |
|
БН – 2,8 |
2,8 |
14; 16 |
55 |
14100;16100 |
5250 |
5000 |
79349;84549 |
Необходимый объем сушилок определяется по величине удельного напряжения объема по испаряемой влаге w, т.е. по количеству влаги, испаряемой с 1 м3 объема сушилки:
V
=
,м3,
где Q – производительность по сухому материалу, т/ч;
R1 и R2 – отношение Ж:Т в исходном и конечном продукте сушки;
- удельное напряжение объема по испаряемой
влаге, кг/(м3·ч)
Нормы удельного напряжения объема по испаряемой влаге устанавливаются на основе практических данных, например, при сушке сульфидных концентратов оно составляет 60…70 кг/(м3·ч), баритовых концентратов – 10…11 кг/(м3·ч), а флюоритовых – 40…50 кг/(м3·ч).
Для сушки гравитационных, например, ильменитовых концентратов , применяются сушилки кипящего слоя ( рис. 190), основным элементом которой является сушильная камера с газораспределительной решеткой, под которую подаются дымовые газы или нагретый воздух с температурой 500…800˚С.
Р
ис.
190. Схема сушки в печи кипящего слоя
Под действием этих теплоносителей на решетке образуется «кипящий слой» из материала высотой 30…45˚С, в котором и происходит испарение влаги. Производительность такой сушилки достигает 300 т/ч в зависимости от крупности исходного материала. Оптимальной крупностью для сушилок кипящего слоя является 0,25…1,0 мм.