
- •Глава 3 физические методы обогащения
- •Глава 4. Физико – химические методы обогащения
- •Глава 5. Вспомогательные процессы
- •Глава 6. Контроль процессов обогащения
- •Глава 7. Практика обогащения руд и россыпей цветных металлов
- •Введение
- •Глава 1 руды и минералы цветных металлов процессы обогащения
- •1.1.Характеристика основных типов руд и минералов цветных
- •Металлов
- •1.2. Экономическая целесообразность процессов обогащения
- •1.3. Понятия о методах и схемах обогащения
- •1.4. Продукты и показатели обогащения руд
- •Глава 2 процессы подготовки руд к обогащению
- •2.1. Процессы дробления и измельчения. Общие сведения
- •2.2. Теоретические основы процессов дробления.
- •2.3. Типы дробильных машин и аппаратов, принцип их действия
- •2.3.1. Щековые дробилки
- •2.3.2. Конусные дробилки
- •Валковые дробилки
- •2.3.4. Дробилки ударного действия
- •Техническая характеристика молотковой однороторной дробилки с подвижной плитой дмн – 2100 х 1850
- •2.4. Теоретические основы процессов измельчения
- •2.5. Измельчительное оборудование
- •2.5.1. Шаровые мельницы
- •2.5.2 Стержневые мельницы
- •2.5.3. Мельницы самоизмельчения
- •2.6. Грохочение и классификация по крупности
- •2.6.1. Определение гранулометрического состава руды и продуктов обогащения
- •2.6.2. Грохочение. Основные принципы и показатели
- •2.6.3. Классификация и конструкция грохотов.
- •Техническая характеристика резонансного грохота грл -61
- •Техническая характеристика барабанного промывочного
- •2.6.4. Процессы классификации продуктов измельчения
- •2.7. Схемы рудоподготовки
- •2.7.1. Схемы дробления и грохочения
- •2.7.2. Схемы измельчения и классификации
- •2.8. Дезинтеграция и промывка
- •2.8.1. Процессы дезинтеграции и промывки
- •2.8.2. Аппараты для дезинтеграции и промывки
- •Техническая характеристика мечевой мойки мд – 3,2
- •Глава 3 Физические методы обогащения
- •3.1. Классификация физических методов обогащения
- •3.2. Гравитационные методы обогащения
- •3.2.1. Теоретические основы процессов гравитационного обогащения
- •3.2.2.. Гидравлическая классификация.
- •3.2.3.. Процесс отсадки. Отсадочные машины.
- •3.3. Процессы обогащения в безнапорной струе воды, текущей по наклонной поверхности
- •3.3.1 Обогащение на шлюзах
- •3.3.2. Обогащение на винтовых и конусных сепараторах
- •3.3.3.Обогащение на концентрационных столах
- •3.4. Обогащение в центробежных концентраторах и сепараторах
- •3.5. Обогащение в тяжелых суспензиях
- •3.6. Технология гравитационного обогащения руд и россыпей
- •3.7. Магнитные методы обогащения
- •3.7.1. Теоретические основы процессов магнитной сепарации
- •3.7.2. Магнитные и электромагнитные сепараторы
- •3.8. Электрические методы обогащения
- •3.8.1. Теоретические основы процессов электрической сепарации
- •3.8.2. Электрические сепараторы
- •3.8.3. Схемы электромагнитного и электрического обогащения
- •3.9. Специальные методы обогащения
- •Глава 4 Физико – химические методы обогащения
- •4.1. Теоретические основы процесса флотационного обогащения
- •4.2.Флотационные реагенты и механизм их действия
- •4.2.1. Реагенты – собиратели
- •4.2.2. Реагенты – модификаторы
- •4.2.3.Реагенты – пенообразователи
- •4.3. Флотационные машины, устройство, принцип действия, области применения.
- •4.4. Основы технологии флотационного обогащения руд цветных металлов
- •4.4.1. Факторы, влияющие на технологию флотации руд
- •4.4.2 .Операции и схемы флотации
- •Глава 5. Вспомогательные процессы
- •5.1. Классификация вспомогательных процессов
- •5.2. Процесс сгущения
- •5.3. Процесс фильтрования
- •5.4. Процесс сушки. Устройство и принцип действия сушильных агрегатов
- •5. 5. Пылеулавливание
- •5.6. Очистка сточных вод и оборотное водоснабжение
- •Глава 6 Контроль процессов обогащения
- •6.1. Опробование
- •6.2. Контроль и управление процессами обогащения
- •6.3. Учет на обогатительных фабриках
- •Глава 7
- •7.1. Технология медных и медно-пиритных руд
- •7.2. Обогащение медно-цинковых руд
- •7.3. Обогащение свинцовых, свинцово-цинковых и медно-свинцово-цинковых руд
- •7.4. Обогащение никелевых руд
- •7.5. Обогащегние золотосодержащих руд и россыпей
- •7.6. Обогащение оловянных и вольфрамовых руд и россыпей
- •7.7. Обогащение титансодержащих руд и россыпей
- •7.8. Обогащение литиевых и бериллиевых руд
5.2. Процесс сгущения
Сгущение – это непрерывный процесс разделения твердой и жидкой фазы, основанный на естественном осаждении твердых частиц пульпы под действием силы тяжести. Твердые минеральные частицы, осевшие в аппарате для сгущения (сгустителе), непрерывно разгружаются в виде сгущенного продукта, а осветленная жидкая фаза удаляется в виде слива.
Процесс сгущения осуществляется обычно в цилиндрических резервуарах большой емкости – сгустителях, получивших широкое распространение в практике обогащения различных руд. Помимо цилиндрических сгустителей в последнее время все более широкое распространение получают пластинчатые сгустители различной конструкции, где осождение осуществляется на наклонных пластинах.
В цилиндрическом сгустителе исходная пульпа поступает в центр сгустителя. При оптимальном заполнении материалом в установившемся режиме образуется несколько зон ( рис. 178).
Исходная пульпа
Рис. 178. Зоны сгущения в радиальном сгустителе
В верхней части располагается зона А – зона осветленной воды , которая поступает в кольцевой желоб сгустителя и удаляется в виде слива. Далее следует зона Б – зона пульпы первоначальной плотности, куда подается исходная пульпа. В этой зоне в зависимости от содержания твердого происходит свободное или стесненное осаждение частиц. В нижней части находится зона уплотнения или сжатия Г, в которой жидкость выделяется из пульпы в результате давления находящегося выше материала. Иногда между зоной Б и Г выделяют промежуточную зону В – зону осаждения или сгущения. Сгущенный материал разгружается через отверстия в центральной части днища сгустителя.
На процесс сгущения, протекающий под действием силы тяжести, влияют различные факторы такие, как минералогический и гранулометрический состав материала, содержание твердого в исходной пульпе, плотность твердой фазы, температура пульпы, рН среды, наличие реагентов, требования к чистоте слива и т.п.
С увеличением крупности и плотности частиц эффективность сгущении я повышается, т.к. скорость падения их соответствует закономерностям скорости осаждения частиц – закону Стокса. Чем мельче материал, тем медленнее идет процесс сгущения, а осаждение материала крупностью менее 0,1 мкм практически прекращается. В этом случае частицы уже являются коллоидными, для которых влияние молекулярных сил, броуновского движения и электрического отталкивания одноименно заряженных частиц, уравновешивает скорость падения частиц и они находятся во взвешенном состоянии.
Трудно сгущаются глинистые материалы, когда они разбухают и тончайшие глинистые частицы обволакиваю минеральные зерна и стабилизируют их.
Увеличение плотности пульпы и понижение температуры повышают вязкость пульпы, а следовательно, увеличивают сопротивление подения частиц и уменьшают скорость их осаждения. Эффективность сгущения повышается с разжижением пульпы, но только до определенного предела, т.к. в сильно разбавленных пульпах частицы настолько разрозненны, что не могут укрупняться. Оптимальное отношение Т:Ж при сгущении составляет около 1:6.
В зависимости от состава пульпы и от состава специальных реагентов твердые частицы при сгущении осаждаются раздельно или в виде агрегатов, которые имеют значительно большую скорость осаждения. Поэтому для интенсификации процесса осаждения применяются различные способы агрегации тонких минеральных частиц и прежде всего процесс коагуляции и флокуляции.
Как известно, тонкие коллоидные частицы как твердые тела обладают свойствами адсорбировать ионы на поверхности с образованием на них двойного электрического слоя, который имеет заряд одноименный с зарядом адсорбированных ионов. Поэтому эти частицы имеют одинаковые заряды и отталкиваются друг от друга. Изменение двойного электрического слоя частиц можно осуществить добавлением электролита, который не только изменяет общий заряд частицы, но и снижает величину электрокинетического потенциала ее до такого критического значения, при котором частицы теряют устойчивость и образуют крупные агрегаты, которые обладают большой массой и быстро осаждаются. Такое явление называется коагуляцией. В качестве электролитов коагулянтов применяется известь, серная кислота, сульфаты металлов и т.п.
Тонко диспергированные частицы можно укрупнять также с помощью поверхностно – активных высокомолекулярных органических соединений. Флокулянты адсорбируются на поверхности минеральных частиц, строго ориентируясь аполярными радикалами в водную фазу. Затем частицы образуют крупные агрегаты – флокулы. Такой процесс в отличии от коагуляции называется флокуляцией.
В качестве флокулянта на обогатительных фабриках применяются ваысокомолекулярные соединения – полиакриламид, сепаран, полиоксиэтилен и др.
Молекулярная масса полиакриламида (ПАА)
где n - число звеньев в молекуле, колеблется от 1· 106 до 60 · 106.
Применяется ПАА в виде водного раствора концентрацией 0,05…0,15%. Расход флокулянта составляет 40…100 г/т. Использование полиакриламида позволяет увеличить скорость осаждения минеральных частиц в 4…10 раз, уменьшить потери твердого со сливом в 4…5 раз и увеличить удельную производительность сгустителя на 30…40%.
Сгустители. На обогатительных фабриках для сгущения нашли наиболее широкое распространение цилиндрические сгустители непрерывного действия с центральным или периферическим приводом, а также пластинчатые сгустители.
Радиальный сгуститель с центральным приводом ( рис. 179)
состоит из цилиндрического чана с горизонтальным или коническим днищем и кольцевым сливным желобом. В центре чана на металлической ферме укреплен вертикальный вал , к нижнему концу которого прикреплен гребковый механизм с гребками . Исходная пульпа по желобу или трубе поступает в питающую воронку, которая располагается в центре сгустителя. Пройдя предохранительный диск и распределительный диск пульпа поступает в сгуститель. Частицы минералов оседают на днище сгустителя, имеющего угол наклона до 12°, и гребками перемещаются к разгрузочной воронке в центре чана. Осветленная вода в верхней части сгустителя переливается через бор и по кольцевому желобу удаляется через отверстие в стенке чана. Чан сгустителей большого диаметра изготовляется из бетона, а сгустителей небольшого размера – из железа. Сгущенный продукт из сгустителей небольшого размера обычно разгружается самотеком, а из больших сгустителей - диафрагмовыми насосами.
Сгустители с центральным приводом имеют диаметр от 2,5 до 50 м с глубиной чана в центре от 2,8 до 7,5 мм с площадью сгущения от 5 до 7850 м2 ( табл. 71).
Сгустители с периферическим приводом отличаются от сгустителей с центральным приводом только устройством разгрузочного механизма, который состоит из рамы с гребками, опирающуюся на центральную колонну и монорельс, уложенный по всему периметру чана. У периферии рама заканчивается кареткой, на которой имеется электродвигатель, редуктор и приводной ролик. Каретка движется по монорельсу и приводит в движение гребковую раму с граблинами, окружная скорость которой у периферии обычно составляет 0,1 м/с. Слив удаляется через кольцевой желоб, а сгущенный продукт через отверстия в днище откачивается центробежными или диафрагмовыми насосами.
Сгустители с периферическим приводом выпускаются только двух диаметров – 25 и 30 м ( см. табл. 71).
Таблица 71 Техническая характеристика радиальных сгустителей
Параметры |
С центральным приводом |
С периферическим приводом |
|||||||||||
Ц-2,5 |
Ц-4 |
Ц-6 |
Ц-9 |
Ц-12 |
Ц-15 |
Ц-18 |
Ц-25 |
Ц-30 |
Ц-50 |
Ц-100 |
П-25М1 |
П-30М1 |
|
Диаметр чана,м |
2,5 |
4,0 |
6,0 |
9,0 |
12,0 |
15,0 |
18,0 |
25,0 |
30,0 |
50,0 |
100,0 |
25,0 |
30,0 |
Глубина чана в центре,м |
2,8 |
3,0 |
3,4 |
3,6 |
3,8 |
4,0 |
4,3 |
4,0 |
4,0 |
5,0 |
7,5 |
3,6 |
3,6 |
Площадь осаждения, м2 |
5,0 |
12,0 |
28,0 |
63,0 |
110,0 |
175 |
250 |
490 |
700 |
1950 |
7850 |
490 |
700 |
Продолжительность одного оборота гребков, мин |
1,3 |
2,0 |
3,0 |
4,5 |
6,0 |
7,5 |
9,0 |
10;13 |
23 |
17;26 |
33-80 |
11;13; |
16;20 |
Мощность привода гребков, кВт |
0,8 |
1,1 |
1,7 |
2,5 |
3,0 |
3,5 |
4,0 |
5,0 |
6,0 |
8,5 |
10,0 |
3,0 |
4,0 |
Габаритные размеры, м Внешний диаметр высота |
3,0 5,2 |
5,0 5,4 |
7,0 8,5 |
10,5 8,7 |
13,0 9,7 |
16,0 10,0 |
19,0 10,5 |
27,0 13,0 |
32,0 13,5 |
52,0 13,5 |
106,0 20,5 |
27,0 8,0 |
32,0 8,0 |
Производительность сгустителей определяется по удельной производительности, т.е. по количеству твердого в сутки на 1 м2 площади сгущения . Эта величина зависит от содержания твердого в сгущенном продукте, от содержания материала крупностью минус 0,074 мм в питании, от свойств ценного минерала и от свойств применяемого флокулянта. Значения удельной производительности устанавливается по практическим данным. В табл. 72 приведены значения удельной производительности сгустителя при сгущении различных концентратов.
Таблица 72. Удельная производительность сгустителя при сгущении концентратов
Концентраты |
Содержание,% |
Удельная производительность, т/(м2/сут) |
|
кл. -0,074 мм |
твердого в сгущенном продукте |
||
Свинцовые |
90…95 |
65…70 |
0,7…0,8 |
Цинковые |
85…90 |
60…70 |
0,7…0,9 |
Медные |
80…85 |
60…65 |
0,6…0,7 |
Никелевые |
85…95 |
60…65 |
1,1 |
Пиритные |
75…85 |
70…75 |
2,2…4 |
Молибденовые |
98 |
40…45 |
0,2 |
Апатитовые |
75 |
48…49 |
4,7 |
Флюоритовые |
55…60 |
60…70 |
1…2 |
В последнее время повсеместное использование находят высокопроизводительные цилиндрические сгустители типа Супафло фирмы Оутокумпу ( Финляндия). Производительность этих сгустители в 3…10 раз больше производительности обычных сгустителей. Они обеспечивают получение сгущенного продукта плотностью до 75% и чистого слива.
Отличаются эти сгустители наличием питающего колодца, в который питание и раствор флокулянта подается по касательной ( типа трубы Вентури), и в котором происходит эффективная флокуляция с деаэрацией поступающей пульпы, наличием перегородок для регулирования перемешивания и регулируемой скоростью подачи пульпы. Все это приводит к увеличению скорости осаждения, снижению расхода флокулянта, повышению производительности по твердому и увеличению плотности сгущенного продукта. Кроме того, сгуститель Супафло имеют небольшой размер и занимают значительно меньше площади, чем обычные сгустители. Диаметр наиболее широко применяемых сгустителей Супафло обычно составляет от 6 до 12 м.
В пластинчатых сгустителях используется принцип осаждения на наклонной поверхности. Пульпа в этих сгустителях проходят в каналах небольшой толщины, образуемых тонкими наклонно установленными пластинами под углом 55°. Это позволяет придать потоку пульпы ламинарный характер, значительно сократить путь и время осаждения твердых частиц, что значительно увеличивает ( в 5…10 раз) удельную производительность сгустителя на единицу занимаемой площади по сравнению с радиальным сгустителем.
Пластинчатый сгуститель ( рис.180) состоит из двух основных частей – верхней емкости с наклонными пластинами и нижней цилиндрической или конической емкости для отстоя.
Рис. 180. Плпстинчатый сгутитель
1 – подача питания; 2 – камера флокуляции; 3 – пакеты наклонных плстин; 4 – слив; 5 – выход слива; 6 – отстойная камера; 7 – сгущенный продукт; 8 – гребок сприводом; 9 – мешалка камеры флокуляции
Питание в пластинчатый сгуститель поступает через вертикальные камеры, которые расположены с двух сторон верхней емкости с наклонными пластинами и через щелевые питающие отверстия равномерно распределяется между пластинами без взмучивания. Твердая фаза осаждается на пластинах, которые изготовляются из стеклопластика или алюминиевого сплава, и попадает в нижнюю трапецевидную емкость, где происходит дальнейшее сгущение и уплотнение. Площадь выше ввода питания является зоной осветления В сгустителе предусмотрено регулирование процесса осаждения и получение сгущенного продукта, содержащего до 60% твердого, и слива с содержание твердого 0…1 г/л. Однако эти сгустители не могут применяться для сгущения крупного материала и материала, имеющего большую плотность, а также для пульпы с высоким содержанием пены.
В табл. 73 приведена техническая характеристика сгустителей пластинчатого типа СП.
Таблица 73. Техническая характеристика пластинчатых сгустителей СП
Параметры |
Типоразмер сгустителя |
||||||
СП – 1А |
СП -2А |
СП – 4А |
СП – 6А |
СП- 8А |
СП 12А |
СП-18А |
|
Производительность по твердому, м3/ч |
25 |
50 |
100 |
150 |
200 |
300 |
450 |
Площадь поверхности зеркала слива, м2 |
1 |
2 |
4 |
6 |
8 |
12 |
18 |
Площадь осаждения, м2 |
20 |
40 |
80 |
120 |
160 |
240 |
360 |
Габаритные размеры, мм: длина ширина высота |
2250 1250 4900 |
2550 2250 5500 |
4150 2150 6260 |
3950 3300 6550 |
3950 4500 6200 |
6550 6500 6500 |
3950 9650 6500 |
Масса, кг |
2650 |
5550 |
6800 |
12000 |
16000 |
24600 |
37500 |
Фирма Меtso Minerals выпускает пластинчатые сгуститель нескольких типов: сгустители с удлиненныи чаном LT с общим объемом пульпы от 1,1 до 72,8 м3, LTS c объемом от 0,8 до 65 м3, LTK c объемом от 4,5 до 112 м3 и комбинированный пластинчато - чановый сгуститель с диаметром чана от 6300 до 12000 мм, площадью осаждения от 220 до 1040 м2 и объемом пульпы от 86 до 1004 м3.
Иногда для сгущения используются гидроциклоны, которые обычно устанавливаются перед сгустителями. Слив гидроциклонов является питанием сгустителей. В результате выделения в пески гидроциклона наиболее крупных классов улучшаются условия сгущения в сгустителе и снижается расход флокулянта. Пески гидроциклонов и сгущенный продукт сгустителя обычно объединяются.