
- •Глава 3 физические методы обогащения
- •Глава 4. Физико – химические методы обогащения
- •Глава 5. Вспомогательные процессы
- •Глава 6. Контроль процессов обогащения
- •Глава 7. Практика обогащения руд и россыпей цветных металлов
- •Введение
- •Глава 1 руды и минералы цветных металлов процессы обогащения
- •1.1.Характеристика основных типов руд и минералов цветных
- •Металлов
- •1.2. Экономическая целесообразность процессов обогащения
- •1.3. Понятия о методах и схемах обогащения
- •1.4. Продукты и показатели обогащения руд
- •Глава 2 процессы подготовки руд к обогащению
- •2.1. Процессы дробления и измельчения. Общие сведения
- •2.2. Теоретические основы процессов дробления.
- •2.3. Типы дробильных машин и аппаратов, принцип их действия
- •2.3.1. Щековые дробилки
- •2.3.2. Конусные дробилки
- •Валковые дробилки
- •2.3.4. Дробилки ударного действия
- •Техническая характеристика молотковой однороторной дробилки с подвижной плитой дмн – 2100 х 1850
- •2.4. Теоретические основы процессов измельчения
- •2.5. Измельчительное оборудование
- •2.5.1. Шаровые мельницы
- •2.5.2 Стержневые мельницы
- •2.5.3. Мельницы самоизмельчения
- •2.6. Грохочение и классификация по крупности
- •2.6.1. Определение гранулометрического состава руды и продуктов обогащения
- •2.6.2. Грохочение. Основные принципы и показатели
- •2.6.3. Классификация и конструкция грохотов.
- •Техническая характеристика резонансного грохота грл -61
- •Техническая характеристика барабанного промывочного
- •2.6.4. Процессы классификации продуктов измельчения
- •2.7. Схемы рудоподготовки
- •2.7.1. Схемы дробления и грохочения
- •2.7.2. Схемы измельчения и классификации
- •2.8. Дезинтеграция и промывка
- •2.8.1. Процессы дезинтеграции и промывки
- •2.8.2. Аппараты для дезинтеграции и промывки
- •Техническая характеристика мечевой мойки мд – 3,2
- •Глава 3 Физические методы обогащения
- •3.1. Классификация физических методов обогащения
- •3.2. Гравитационные методы обогащения
- •3.2.1. Теоретические основы процессов гравитационного обогащения
- •3.2.2.. Гидравлическая классификация.
- •3.2.3.. Процесс отсадки. Отсадочные машины.
- •3.3. Процессы обогащения в безнапорной струе воды, текущей по наклонной поверхности
- •3.3.1 Обогащение на шлюзах
- •3.3.2. Обогащение на винтовых и конусных сепараторах
- •3.3.3.Обогащение на концентрационных столах
- •3.4. Обогащение в центробежных концентраторах и сепараторах
- •3.5. Обогащение в тяжелых суспензиях
- •3.6. Технология гравитационного обогащения руд и россыпей
- •3.7. Магнитные методы обогащения
- •3.7.1. Теоретические основы процессов магнитной сепарации
- •3.7.2. Магнитные и электромагнитные сепараторы
- •3.8. Электрические методы обогащения
- •3.8.1. Теоретические основы процессов электрической сепарации
- •3.8.2. Электрические сепараторы
- •3.8.3. Схемы электромагнитного и электрического обогащения
- •3.9. Специальные методы обогащения
- •Глава 4 Физико – химические методы обогащения
- •4.1. Теоретические основы процесса флотационного обогащения
- •4.2.Флотационные реагенты и механизм их действия
- •4.2.1. Реагенты – собиратели
- •4.2.2. Реагенты – модификаторы
- •4.2.3.Реагенты – пенообразователи
- •4.3. Флотационные машины, устройство, принцип действия, области применения.
- •4.4. Основы технологии флотационного обогащения руд цветных металлов
- •4.4.1. Факторы, влияющие на технологию флотации руд
- •4.4.2 .Операции и схемы флотации
- •Глава 5. Вспомогательные процессы
- •5.1. Классификация вспомогательных процессов
- •5.2. Процесс сгущения
- •5.3. Процесс фильтрования
- •5.4. Процесс сушки. Устройство и принцип действия сушильных агрегатов
- •5. 5. Пылеулавливание
- •5.6. Очистка сточных вод и оборотное водоснабжение
- •Глава 6 Контроль процессов обогащения
- •6.1. Опробование
- •6.2. Контроль и управление процессами обогащения
- •6.3. Учет на обогатительных фабриках
- •Глава 7
- •7.1. Технология медных и медно-пиритных руд
- •7.2. Обогащение медно-цинковых руд
- •7.3. Обогащение свинцовых, свинцово-цинковых и медно-свинцово-цинковых руд
- •7.4. Обогащение никелевых руд
- •7.5. Обогащегние золотосодержащих руд и россыпей
- •7.6. Обогащение оловянных и вольфрамовых руд и россыпей
- •7.7. Обогащение титансодержащих руд и россыпей
- •7.8. Обогащение литиевых и бериллиевых руд
Техническая характеристика мечевой мойки мд – 3,2
Производительность по питанию, т/ч 500
Максимальная крупность питания. мм 60
Расход воды, м3/ т 1…3
Частота вращения мечевого вала, мин-1 14…18
Мощность электродвигателя, кВт 125
Габаритные размеры, мм:
Длина 11200
Высота 4825
Масса, кг 37000
Глава 3 Физические методы обогащения
3.1. Классификация физических методов обогащения
Физические методы обогащения основаны на различие физических свойств минералов, входящих в состав минерального сырья. В зависимости от этих свойств физические методы в настоящее время принято классифицировать на:
гравитационные методы, в которых используется различие в плотности минералов;
магнитые методы обогащения, в которых разделение минералов основано на различии магнитных свойств разделяемых минералов и прежде всего на различии их в магнитной восприимчивости;
в электрических методах используется различие минералов в электрических свойствах;
в специальных методах используются различия минералов в цвете, блеске, форме зерен, прочности, в коэффициенте трения при движении по плоскости, способности растрескиваться при нагревании, их природной и наведенной радиоактивности, люминесценции.
3.2. Гравитационные методы обогащения
Принципы гравитационного обогащения были известны еще 2 тысячи лет тому назад и впервые описаны Плинием, а затем Агриколой. Гравитационное обогащение оставалось основным методом переработки минерального сырья и только в ХХ века с развитием флотации, магнитной и электрической сепарации, гидрометаллургических методов, количество руд, перерабатываемых этим методом несколько уменьшилось. Однако методы гравитационного обогащения применяются широко при переработке железных руд , угля, россыпных и коренных месторождений золота, олова, титана, алмазов. Гравитационные методы, применяемые в сочетании, например, с флотацией , позволяют значительно повысить эффективность, экономичность и комплексность использвания минерального сырья. Эти методы обеспечивают более низкие капитальные и эксплуатационные расходы, не используют дорогие флотационные реагенты, значительно снижают ущерб, наносимый окружающей среде.
. Разделение смеси минеральных зерен гравитационными методами основано на различии скорости и характера их движения в среде под действием силы тяжести и силы сопротивления среды, в соответствии с различием плотностей и крупности минеральных частиц.
Все минералы в зависимости от их плотности можно условно разделить на:
тяжелые, имеющие плотность от 4000 до 8000 кг/м3 и более ( самородное золото, касситерит, вольфрамит, ильменит, циркон, танталит, колумбит);
средние, имеющие плотность от 2700 до 4000 кг/м3 (лимонит, хризоберилл, малахит, апатит и др)
легкие с плотностью менее 2700 кг/м3 ( кварц, полевые шпаты, гипс, кальцит и др.)
В качестве среды, в которой осуществляется разделение минералов используется чаще всего вода, значительно реже применяется воздух, а также тяжелые суспензии и иногда жидкости.
В зависимости от вида используемой разделительной среды, направления ее движения относительно минеральных взвесей гравитационные процессы гравитационные процессы подразделяются на процессы разделения:
в вертикальных восходящих потоках среды ( гидравлическая и пневматическая классификация, тяжелосредная сепарация);
в пульсирующих потоках среды ( отсадка, пневматическая сепарация);
в безнапорной струе воды, текущей по наклонной плоскости ( обогащение на концентрационных столах, в желобах, шлюзах, винтовых и конусных сепараторах);
в центробежных потоках воды ( гидроциклоны, центробежные концентраторы);
Гравитационным методам могут подвергаться полезные ископаемые широкого диапазона крупности, например, в отсадочных машинах может обогащаться уголь крупностью до 200мм, а золотосодержащие и хромитовые руды крупностью до 6 мм. На винтовых сепараторах крупность обогащаемой руды может достигать 2…12 мм, на концентрационных столах – 3…0,04 мм.