
- •Вопрос 1. Определение биофизики как науки, предмет и методы исследования. Основные разделы. Связь биофизики с другими естественными науками. Значение биофизики для медицины.
- •Вопрос 2. Современные представления о свете. Интерференция света. Условия интерференции света. Интерферометры: устройство, применение. Интерференционный микроскоп.
- •Вопрос 3. Дифракция света. Дифракционная решетка. Дифракционный спектр. Дифракция электромагнитных волн на пространственных структурах. Основы рентгеноструктурного анализа. Формула Вульфа-Бреггов.
- •Вопрос 4. Голография. Принципы получения и восстановления голограммы. Применение голографии в медицине.
- •Вопрос 5. Поляризация света. Двойное лучепреломление. Поляризационные устройства: Призма Николя, поляроиды.
- •Вопрос 6. Оптическая активность веществ. Устройство и принцип действия поляриметра-сахариметра. Дисперсия оптической активности. Закон Био. Поляризационный микроскоп.
- •Вопрос 7. Геометрическая оптика. Аберрация линз и способы ее устранения.
- •Вопрос 8. Полное внутреннее отражение света от границы раздела двух сред. Рефрактометрия. Волоконные световоды: устройство, принцип действия, использование в медицине.
- •Вопрос 9. Оптически система глаза. Аккомодация и разрешающая способность зрения. Аномалии рефракции зрения (миопия, гиперметропия, пресбкопия, астигматизм). Происхождение и их коррекция.
- •Вопрос 10. Информационно-биологические процессы. Первичный механизм зрения. Ретиналь. Цикл превращения родопсина.
- •Вопрос 11. Адаптация зрения. Закон Вебера-Фехнера. Амплитудная характеристика зрения. Основные м вспомогательные механизмы адаптации.
- •Вопрос 12. Оптический микроскоп: устройство, увеличение, разрешение. Формула Аббе. Ультрафиолетовый микроскоп: устройство, принцип действия, преимущества. Иммерсионные системы.
- •Вопрос 13. Волновые свойства частиц. Дифракция электронов. Формула де Бройля. Электростатическая линза. Электронный микроскоп (устройство, увеличение, предел разрешения) и его применение в медицине.
- •Вопрос 14. Тепловое излучение тел и его основные характеристики. Понятие об абсолютно чёрном и сером телах. Закон Кирхгофа.
- •Вопрос 15. Законы Стефана-Больцмана. Излучение тела человека. Тепловизор: принцип действия и использование в диагностических целях.
- •Вопрос 16. Первичные стадии фотобиологических процессов. Излучение м поглощение энергия атомами и молекулами. Полная энергия молекулы. Спектр поглощения.
- •Вопрос 17. Пути использования молекулой энергии поглощённого кванта. Люминесценция. Правило Стокса. Механизм миграция энергии.
- •Вопрос 18. Первичные и вторичные фотохимические реакции.
- •Вопрос 19. Спектр действия фотобиологических процессов. Механизм бактериостатического и бактерицидного действия ультрафиолетовых лучей.
- •Вопрос 20. Механизм канцерогенного действия уфл и инактивации ферментов.
- •Вопрос 21. Закон Бугера - Ламберта - Бера. Спектрофотометрия, микроспектрофотометрия.
- •Вопрос 24. Применение рентгеновского излучения в медицине: рентгеноскопия, рентгенография, компьютерная томография. Физические основы этих методов. Рентгенотерапия.
- •Вопрос 25. Радиоактивность. Основном закон радиоактивного распада. Альфа-, бета-, и гамма - распад атомных ядер.
- •Вопрос 26. Взаимодействие ионизирующего излучения с веществом. Ионизационные потери. Проникающая способность.
- •Вопрос 27. Дозиметрия ионизирующего излучения. Поглощённая и эквивалентная дозы. Коэффициент качества. Летальная и полулетальная дозы.
- •Вопрос 28. Использование радионуклидов в медицине. Радиодиагностика. Лучевая терапия. Аппарат гамма-терапии. Активационный анализ. Сканирование.
- •Вопрос 29. Биофизические основы действия ионизирующих излучений на организм. Основные стадии развития лучевой болезни. Принципы химической защиты от ионизирующего излучения.
- •Вопрос 30. Источники когерентного излучения. Индуцированное излучение. Устройство и принцип действия рубинового лазера. Использование лазерного излучения в медицине.
- •Вопрос 31. Основные режимы работы лазера. Импульсная мощность лазера. Механизм термического, ионизирующего к ударного действия лазерного излучения на организм.
- •Вопрос 32. Биофизические основы термического, механического и химического действия ультразвука на клетки и ткани организма. Механизм кавитации.
- •Вопрос 33. Использование уз в диагностике и лечении. Эхолокация. Допплерография. Ультразвуковая физиотерапия.
- •Вопрос 35. Механизм действия постоянного магнитного поля на организм. Механизм термического и атермического действия полей свч на организм.
- •Вопрос 36. Использование электромагнитных полей в физиотерапии (увч-терапия, диатермия, дарсонвализация). Механизм действия на организм.
- •Вопрос 37. Электрический импульс и импульсный ток. Виды импульсов. Дифференцирующие к интегрирующие цепи. Механизм действия импульсных токов на организм.
- •Вопрос 40. Биофизика слуха. Понятие о звукопроводящей и звуковоспринимающей системах уха. Гидродинамическая теории слуха. Физические основы звуковых методов исследования.
- •Вопрос 41. Структурная организация клетки. Принцип компартментатностн. Современные методы исследования биологических мембран. Структура мембран.
- •Вопрос 42. Субъединицы мембран. Синтез мембран. Течение мембран. Биологическая роль мембран. Клеточная проницаемость. Значение изучения клеточной проницаемости для медицины.
- •Вопрос 43. Диффузия. Концентрационный градиент. Законы Фика и Коллендера-Берлунда. Мембранный транспорт. Теория простой диффузии.
- •Вопрос 45. Теория активного транспорта веществ. Кинетика переноса калия м натрия. Работа активного перекоса ионов. Понятие об ионных каналах.
- •Вопрос 46. Происхождение мембранного потенциала. Роль активного транспорта ионов и доннановского равновесия в генезе потенциала покоя. Уравнение Гольдмана-Ходжкина-Катца.
- •Вопрос 47. Изменение мембранного потенциала при раздражения. Возбудимость клетки. Понятие о локальном ответе. Критический уровень деполяризации. Механизм генерации потенциала действия.
- •Вопрос 48. Электрический диполь. Анализ электрического поля диполя в гомогенном объёмном проводнике.
- •Вопрос 49. Контактное и дистантное отведения биопотенциалов. Биполярное к униполярное отведения. Показания к применению разных видов отведения.
- •Вопрос 51. Электропроводность органов и тканей. Электронная, дипольиая, мембранная и электролитическая теория поляризации. Поляризационная ёмкость, её происхождение и диагностическая роль.
- •Вопрос 52. Импеданс тканей организма. Теория дисперсии импеданса. Эквивалентная электрическая схема тканей организма.
- •Вопрос 53. Оценка жизнеспособности тканей по частотной зависимости импеданса. Использование формулы Стокса для изучения молекулярной структуры тканей. Физические основы реографии.
- •Вопрос 54. Электрокинетические явления: электрофорез, электроосмос, потенциал течения и седиметации. Происхождение электрокинетического потенциала - теория Дерягниа-Штерна.
- •Вопрос 55. Использование электрофореза в медицине. Электрофореграфия. Терапевтический электрофорез. Электрокинетический потенциал и иммунитет.
- •Вопрос 56. Биомеханика. Понятие о биокинематических цепях. Модели Гука, Ньютона, Кельвина-Фойгта.
- •Вопрос 57. Биомеханика дыхания. Механизмы вдоха и выдоха. Характеристики дыхательных сопротивлений. Принцип расчёта работы дыхания по pV-диаграмме.
- •Вопрос 58. Поверхностное натяжение биологических жидкостей. Сурфактанты и их роль в механизме расправления лёгочных альвеол. Рабочая характеристика альвеолы.
- •Вопрос 59. Эффективность дыхания. Рабочая характеристика дыхания. Причины падения эффективности дыхания при лёгочных заболеваниях.
- •Вопрос 61. Биомеханика сердца. Трехкомпонентная модель мышцы. Напряжение миокарда. Зависимость напряжения от деформации.
- •Вопрос 62. Биомеханика сердца. Сила миокарда. Закон Франка-Стерлинга. Принципы расчёта работы и мощности сердца. PV-диаграмма.
- •Вопрос 63. Эффективность сердца. Рабочая характеристика сердца. Роль предсердий.
- •Вопрос 64. Моделирование. Основные виды моделирования.
- •Вопрос 65. Информация. Количественная и качественная оценка информации. Теория игр.
- •Вопрос 66. Теория управления. Понятие о системе управления. Прямые и обратные связи.
- •Вопрос 67. Принципы работы системы автоматического регулирования (сар) с воздействием по рассогласованию (на примере регуляции кровяного артериального давления при кровопотере).
- •Вопрос 68. Принципы работы системы автоматического регулирования с воздействием по возмущению (на примере регуляция уровня кислорода в крови при экспериментальном закрытом пневмотораксе).
- •Вопрос 69. Процессы управления в биологических системах. Устойчивость н надежность систем автоматического регулирования. Принципы обеспечения высокой надежности биологических систем.
- •Вопрос 70. Нарушение процессов управления в организме. Кибернетический подход к этиологии и патогенезу заболеваний на примере развития рака легкого у курильщика.
- •Вопрос 71. Нарушение процессов управления в организме. Кибернетический подход к этиологии и патогенезу заболеваний на примере развития гипертонической болезни.
- •Вопрос 72. Причины диагностических ошибок врачей. Применение эвм в диагностике. Диагностические системы: «врач-больной», «врач-эвм», «больной-врач-эвм».
- •Вопрос 73. Применение эвм в лечебном процессе. Исовк. Автоматизация лечебного процесса. Понятие об асу. Структура "асу-Здравоохранение", "асу-больница", "асу-аптека".
- •Вопрос 74. Понятие о медицинской электронике. Классификация медицинской аппаратуры. Основные направления в развитии медицинской аппаратуры.
- •Вопрос 76. Характеристика защиты электромедицинской аппаратуры (основные степени и классы защиты от поражения электрическим током).
- •Вопрос 77. Надёжность медицинской аппаратуры. Основные категории надёжности. Классификация медицинской аппаратуры по надёжности.
- •Вопрос 78. Блок-схема диагностического прибора, работающего в масштабе реального времени. Назначение отдельных блоков.
- •Вопрос 79. Средства съёма медицинской информации. Классификация, основные требования.
- •Вопрос 80. Классификация медицинских параметров.
- •Вопрос 81. Электроды. Основные требования к электродам. Классификация.
- •Вопрос 82. Датчики медико-биологической информации.
- •Вопрос 83. Физические принципы работы термисторных, термоэлектрических, пьезоэлектрических, тензорезисторных, индуктивных, емкостных и индукционных датчиков.
- •Вопрос 84. Основные метрологические характеристики датчиков и методы их определения.
- •Вопрос 85. Устройство и принцип действия датчиков температуры (термисторный и термоэлектрический датчики).
- •Вопрос 86. Устройство и принцип действии датчиков параметров сердечно-сосудистой системы (пьезодатчик и микрофонный датчик).
- •Вопрос 87. Устройство и принцип действия датчиков параметров сердечно-сосудистой системы (датчик для измерения давления в периферических артериях, датчик для прямого измерения давления крови).
- •Вопрос 88. Устройство и принцип действия датчиков параметров системы дыхания (контактный датчик, датчик из углеродистой резины, турбинный датчик, датчик оксигемографа).
- •Вопрос 89. Датчики тканевого обмена веществ (катионочувствительный и микроспектрофотометрмческий датчики).
- •Вопрос 90. Виды физиологических сигналов и их характеристики. Назначение усилителя биоэлектрических сигналов. Основные требования к усилителям.
- •Вопрос 91. Основные метрологические характеристики усилителей и методы их определения. Искажения в усилителях.
- •Вопрос 92. Устройство и принцип действия транзистора. Обозначение транзисторов на схемах.
- •Вопрос 93. Схема усилительного каскада на транзисторе. Назначение отдельных элементов усилительного каскада. Многокаскадное усиление.
- •Вопрос 94. Устройства отображения и регистрации информации. Основные требовании. Классификации.
- •Вопрос 95. Классификация аналоговых уор. Устройство, принцип действия и метрологические характеристики различных аналоговых уор.
- •Вопрос 96. Метрологические характеристики аналоговых уор и методы их определения.
- •Вопрос 97. Дискретные уор. Классификация, устройство, принцип действия и метрологические характеристики различных уор.
- •Вопрос 98. Комбинированные уор. Классификация, устройство, принцип действия, метрологические характеристики различных уор.
- •Вопрос 99. Системы обработки медико-биологической информации. Основные требования, способы обработки. Классификация автоматических методов обработки.
- •Вопрос 100. Назначение, блок-схема, принципиальная схема и принцип действия аналогового интегратора.
- •Вопрос 101. Назначение, блок схема, принципиальная схема и принцип действия дискретного интегратора.
- •Вопрос 102. Частотные анализаторы (электрические фильтры). Метрологические характеристики, классификация.
- •Вопрос 103. Устройство к принцип действия пассивного электрического фильтра. Амплитудно-частотная характеристика полосового фильтра. Методика поиска полосы прозрачности фильтра.
- •Вопрос 104. Специальные методы обработки информации.
Вопрос 9. Оптически система глаза. Аккомодация и разрешающая способность зрения. Аномалии рефракции зрения (миопия, гиперметропия, пресбкопия, астигматизм). Происхождение и их коррекция.
Глаз может быть представлен как центрированная оптическая система, образованная роговицей, хрусталиком, жидкостью передней камеры с общей оптической силой около 60 диоптрий.
1- стекловидное тело; 2 - роговица; 3 - сетчатка; 4 - склера; 5 - хрусталик; 6 - сосудистая оболочка.
Аккомодация - изменение оптической силы глаза таким образом, чтобы изображение всегда получалось на сетчатке, независимо от расстояния, на котором находится предмет. Аккомодация происходит за счет изменения кривизны хрусталика.
Разрешающая способность глаза определяется наименьшим углом зрения, при котором две точки предмета видны отдельно. Для нормального глаза этот угол равен приблизительно одной минуте. При таком угле зрения минимальное расстояние для двух точек, видных отдельно и расположенных на расстоянии 25 сантиметров от глаза, равно 0,07мм.
Миопия - близорукость. При данном недостатке зрения изображение удаленных предметов находится в плоскости, лежащей перед сетчаткой. Для исправления близорукости применяют рассеивающую линзу:
Л хр С
Л - линза; хр - хрусталик; С - сетчатка.
Гиперметропия - дальнозоркость. Гиперметропия объясняется недостаточной преломляющей способностью глаза, вследствие чего изображение получается за сетчаткой. Для исправления дальнозоркости применяют очки с собирающими линзами:
Л хр С
Л - линза; хр - хрусталик; С - сетчатка.
Пресбиопия - уменьшение с возрастом эластичность хрусталика, что ведет к уменьшению пределов аккомодации. Исправляется с помощью очков с собирающими линзами.
Астигматизм чаще всего связан с неравномерной рефракцией в различных мередиальных плоскостях глаза, чаще всего во взаимно перпендикулярных плоскостях. Такой астигматизм называется простым. Простой астигматизм исправляется с помощью очков с цилиндрическими линзами.
Литература: Ремизов А.Н. Медбиофизика,-1987, с.453-460. Ливенцев Н.М., Курс физики,-1978, с.426-432.
Вопрос 10. Информационно-биологические процессы. Первичный механизм зрения. Ретиналь. Цикл превращения родопсина.
Зрение - процесс, при котором, в ответ на поглощение кванта света в видимой области спектра, фоторецепторами формируется зрительный образ. Основные свойства зрительных рецепторов:
а) высокая информативность (в 10 раз больше, чем у остальных чувств);
б) большая чувствительность (порядка 1-2 кванта света);
в) высокое быстродействие;
г) возможность различать до 100000 оттенков цветов;
д) максимум спектральной чувствительности приходится на длину волны 500-550 нм.
Первичный механизм зрения - образование изображения предметов на сетчатке глаза является первичным звеном зрения.
Фоторецепторы сетчатки разделяются на палочки и колбочки. Число палочек 110106, колбочек 6106.
Палочки более светочувствительны, чем колбочки, но они не обеспечивают различия цвета.
Колбочки образуют аппарат дневного и цветового зрения.
Палочка состоит из чувствительного к свету наружного сегмента I, внутреннего сегмента с ядрами и митохондриями II и нервного сегмента Ш (см. рис.).
Характерным элементом палочки является наружный сегмент, имеющий у человека диаметр около 2 мкм и длину от 20 до 30 мкм. Общая длина палочки составляет 50-60 мкм. Вся цитоплазма наружного сегмента заполнена своеобразными органеллами, называемыми дисками. Промежутки между ними не превышают 15 нм. В каждой палочке содержится от 700 до 1000 дисков. Диаметр каждого диска равен порядка 2 мкм, а толщина 15-18 нм. Следовательно, на внутридисковое содержимое вместе с цитозолем приходится не более половины объема наружного сегмента. Другую половину занимают мембраны дисков. Именно в них осуществляется первичный процесс восприятия света. Поэтому мембрану диска называют фоторецепторной мембраной. Подобно всем биомембранам, она состоит из липидов и белков, однако ей присущи два кардинальных отличительных признака. Во-первых, ее основным белковым компонентом является зрительный пигмент - родопсин. Во-вторых, более 50 процентов жирно-кислотного состава фосфолипидов, образующих дисковые мембраны, приходится на полиненасыщенные жирные кислоты. Высокая степень насыщенности жирно-кислотных «хвостов» фосфолипидных молекул придает гидрофобному бимолекулярному каркасу фоторецепторной мембраны необычную подвижность, вследствие чего она обладает малой вязкостью (порядка
100 сП).
Первичный механизм возбуждения палочек светом связан со сложными превращениями родопсина в фоторецепторной мембране. Родопсин - высокомолекулярное соединение, состоящее из двух основных компонентов: альдегида витамина А (ретиналя) и липопротеина под названием опсин («белок глаза»). В темноте ретиналь пребывает в так называемой 11-цисформе, для которой характерна некоторая скрученность молекулы. Скрученной молекуле 11-цис-ретиналя свойственна наибольшая энергия взаимодействия с опсином, вследствие чего их комплекс весьма устойчив. Для его разрушения необходимо преобразовать 11-цис-ретиналь в другой изомер - в так называемый полностью транс-ретиналь. Такое преобразование, происходящее под действием света, называется фотоизомеризацией.
Непосредственным следствием фотоизомеризации, приводящим, в конце концов, к появлению у человека ощущения света, служат конформационные перестройки молекулы родопсина. Дело в том, что пространственно 11-цис-ретиналь точно соответствует конфигурации активного центра опсина. При образовании трансизомера это соответствие (комплиментарность) нарушаются, в результате чего ретиналь отщепляется от опсина, и родопсин обесцвечивается - претерпевает фотолиз.
Вне действия света распавшийся родопсин восстанавливается. Цикл превращений родопсина приведен ниже на рисунке.
1 - родопсин;
2 - фотоизомеризация ретиналя;
3 - распад родопсина;
4 - при помощи фермента АДГ (алкогольдегидрогеназа) получается трансформа витамина А;
5 - при помощи фермента ДПН (дифосфопиридиннуклеотид) образуется цис-форма витамина А;
6 - образование ретиналя и соединение с опсином.
Вследствие конформационной перестройки молекул родопсина в фоторецепторной мембране под действием
кванта света происходит гиперполяризационный сдвиг мембранного потенциала фоторецепторной клетки,
который называется рецепторным потенциалом (РП).
Амплитуда рецепторного потенциала возрастает при повышении интенсивности света, падающего на сетчатку и от длины волны света, поглощенного фоторецептором. Палочки генерируют наибольший РП и ответ на зеленый свет (31=500 нм). Среди колбочек выделено 3 типа, один из которых дает максимальный ответ (РП) на синий, второй - на зеленый, третий - на желто-красный свет.
Литература: Ремизов А.Н., Мвдбиофизика,-1987, с. 531-534. Владимиров ЮЛ. «Биофизика»,-1983, с.244-252. Лекции.