
- •Вопрос 1. Определение биофизики как науки, предмет и методы исследования. Основные разделы. Связь биофизики с другими естественными науками. Значение биофизики для медицины.
- •Вопрос 2. Современные представления о свете. Интерференция света. Условия интерференции света. Интерферометры: устройство, применение. Интерференционный микроскоп.
- •Вопрос 3. Дифракция света. Дифракционная решетка. Дифракционный спектр. Дифракция электромагнитных волн на пространственных структурах. Основы рентгеноструктурного анализа. Формула Вульфа-Бреггов.
- •Вопрос 4. Голография. Принципы получения и восстановления голограммы. Применение голографии в медицине.
- •Вопрос 5. Поляризация света. Двойное лучепреломление. Поляризационные устройства: Призма Николя, поляроиды.
- •Вопрос 6. Оптическая активность веществ. Устройство и принцип действия поляриметра-сахариметра. Дисперсия оптической активности. Закон Био. Поляризационный микроскоп.
- •Вопрос 7. Геометрическая оптика. Аберрация линз и способы ее устранения.
- •Вопрос 8. Полное внутреннее отражение света от границы раздела двух сред. Рефрактометрия. Волоконные световоды: устройство, принцип действия, использование в медицине.
- •Вопрос 9. Оптически система глаза. Аккомодация и разрешающая способность зрения. Аномалии рефракции зрения (миопия, гиперметропия, пресбкопия, астигматизм). Происхождение и их коррекция.
- •Вопрос 10. Информационно-биологические процессы. Первичный механизм зрения. Ретиналь. Цикл превращения родопсина.
- •Вопрос 11. Адаптация зрения. Закон Вебера-Фехнера. Амплитудная характеристика зрения. Основные м вспомогательные механизмы адаптации.
- •Вопрос 12. Оптический микроскоп: устройство, увеличение, разрешение. Формула Аббе. Ультрафиолетовый микроскоп: устройство, принцип действия, преимущества. Иммерсионные системы.
- •Вопрос 13. Волновые свойства частиц. Дифракция электронов. Формула де Бройля. Электростатическая линза. Электронный микроскоп (устройство, увеличение, предел разрешения) и его применение в медицине.
- •Вопрос 14. Тепловое излучение тел и его основные характеристики. Понятие об абсолютно чёрном и сером телах. Закон Кирхгофа.
- •Вопрос 15. Законы Стефана-Больцмана. Излучение тела человека. Тепловизор: принцип действия и использование в диагностических целях.
- •Вопрос 16. Первичные стадии фотобиологических процессов. Излучение м поглощение энергия атомами и молекулами. Полная энергия молекулы. Спектр поглощения.
- •Вопрос 17. Пути использования молекулой энергии поглощённого кванта. Люминесценция. Правило Стокса. Механизм миграция энергии.
- •Вопрос 18. Первичные и вторичные фотохимические реакции.
- •Вопрос 19. Спектр действия фотобиологических процессов. Механизм бактериостатического и бактерицидного действия ультрафиолетовых лучей.
- •Вопрос 20. Механизм канцерогенного действия уфл и инактивации ферментов.
- •Вопрос 21. Закон Бугера - Ламберта - Бера. Спектрофотометрия, микроспектрофотометрия.
- •Вопрос 24. Применение рентгеновского излучения в медицине: рентгеноскопия, рентгенография, компьютерная томография. Физические основы этих методов. Рентгенотерапия.
- •Вопрос 25. Радиоактивность. Основном закон радиоактивного распада. Альфа-, бета-, и гамма - распад атомных ядер.
- •Вопрос 26. Взаимодействие ионизирующего излучения с веществом. Ионизационные потери. Проникающая способность.
- •Вопрос 27. Дозиметрия ионизирующего излучения. Поглощённая и эквивалентная дозы. Коэффициент качества. Летальная и полулетальная дозы.
- •Вопрос 28. Использование радионуклидов в медицине. Радиодиагностика. Лучевая терапия. Аппарат гамма-терапии. Активационный анализ. Сканирование.
- •Вопрос 29. Биофизические основы действия ионизирующих излучений на организм. Основные стадии развития лучевой болезни. Принципы химической защиты от ионизирующего излучения.
- •Вопрос 30. Источники когерентного излучения. Индуцированное излучение. Устройство и принцип действия рубинового лазера. Использование лазерного излучения в медицине.
- •Вопрос 31. Основные режимы работы лазера. Импульсная мощность лазера. Механизм термического, ионизирующего к ударного действия лазерного излучения на организм.
- •Вопрос 32. Биофизические основы термического, механического и химического действия ультразвука на клетки и ткани организма. Механизм кавитации.
- •Вопрос 33. Использование уз в диагностике и лечении. Эхолокация. Допплерография. Ультразвуковая физиотерапия.
- •Вопрос 35. Механизм действия постоянного магнитного поля на организм. Механизм термического и атермического действия полей свч на организм.
- •Вопрос 36. Использование электромагнитных полей в физиотерапии (увч-терапия, диатермия, дарсонвализация). Механизм действия на организм.
- •Вопрос 37. Электрический импульс и импульсный ток. Виды импульсов. Дифференцирующие к интегрирующие цепи. Механизм действия импульсных токов на организм.
- •Вопрос 40. Биофизика слуха. Понятие о звукопроводящей и звуковоспринимающей системах уха. Гидродинамическая теории слуха. Физические основы звуковых методов исследования.
- •Вопрос 41. Структурная организация клетки. Принцип компартментатностн. Современные методы исследования биологических мембран. Структура мембран.
- •Вопрос 42. Субъединицы мембран. Синтез мембран. Течение мембран. Биологическая роль мембран. Клеточная проницаемость. Значение изучения клеточной проницаемости для медицины.
- •Вопрос 43. Диффузия. Концентрационный градиент. Законы Фика и Коллендера-Берлунда. Мембранный транспорт. Теория простой диффузии.
- •Вопрос 45. Теория активного транспорта веществ. Кинетика переноса калия м натрия. Работа активного перекоса ионов. Понятие об ионных каналах.
- •Вопрос 46. Происхождение мембранного потенциала. Роль активного транспорта ионов и доннановского равновесия в генезе потенциала покоя. Уравнение Гольдмана-Ходжкина-Катца.
- •Вопрос 47. Изменение мембранного потенциала при раздражения. Возбудимость клетки. Понятие о локальном ответе. Критический уровень деполяризации. Механизм генерации потенциала действия.
- •Вопрос 48. Электрический диполь. Анализ электрического поля диполя в гомогенном объёмном проводнике.
- •Вопрос 49. Контактное и дистантное отведения биопотенциалов. Биполярное к униполярное отведения. Показания к применению разных видов отведения.
- •Вопрос 51. Электропроводность органов и тканей. Электронная, дипольиая, мембранная и электролитическая теория поляризации. Поляризационная ёмкость, её происхождение и диагностическая роль.
- •Вопрос 52. Импеданс тканей организма. Теория дисперсии импеданса. Эквивалентная электрическая схема тканей организма.
- •Вопрос 53. Оценка жизнеспособности тканей по частотной зависимости импеданса. Использование формулы Стокса для изучения молекулярной структуры тканей. Физические основы реографии.
- •Вопрос 54. Электрокинетические явления: электрофорез, электроосмос, потенциал течения и седиметации. Происхождение электрокинетического потенциала - теория Дерягниа-Штерна.
- •Вопрос 55. Использование электрофореза в медицине. Электрофореграфия. Терапевтический электрофорез. Электрокинетический потенциал и иммунитет.
- •Вопрос 56. Биомеханика. Понятие о биокинематических цепях. Модели Гука, Ньютона, Кельвина-Фойгта.
- •Вопрос 57. Биомеханика дыхания. Механизмы вдоха и выдоха. Характеристики дыхательных сопротивлений. Принцип расчёта работы дыхания по pV-диаграмме.
- •Вопрос 58. Поверхностное натяжение биологических жидкостей. Сурфактанты и их роль в механизме расправления лёгочных альвеол. Рабочая характеристика альвеолы.
- •Вопрос 59. Эффективность дыхания. Рабочая характеристика дыхания. Причины падения эффективности дыхания при лёгочных заболеваниях.
- •Вопрос 61. Биомеханика сердца. Трехкомпонентная модель мышцы. Напряжение миокарда. Зависимость напряжения от деформации.
- •Вопрос 62. Биомеханика сердца. Сила миокарда. Закон Франка-Стерлинга. Принципы расчёта работы и мощности сердца. PV-диаграмма.
- •Вопрос 63. Эффективность сердца. Рабочая характеристика сердца. Роль предсердий.
- •Вопрос 64. Моделирование. Основные виды моделирования.
- •Вопрос 65. Информация. Количественная и качественная оценка информации. Теория игр.
- •Вопрос 66. Теория управления. Понятие о системе управления. Прямые и обратные связи.
- •Вопрос 67. Принципы работы системы автоматического регулирования (сар) с воздействием по рассогласованию (на примере регуляции кровяного артериального давления при кровопотере).
- •Вопрос 68. Принципы работы системы автоматического регулирования с воздействием по возмущению (на примере регуляция уровня кислорода в крови при экспериментальном закрытом пневмотораксе).
- •Вопрос 69. Процессы управления в биологических системах. Устойчивость н надежность систем автоматического регулирования. Принципы обеспечения высокой надежности биологических систем.
- •Вопрос 70. Нарушение процессов управления в организме. Кибернетический подход к этиологии и патогенезу заболеваний на примере развития рака легкого у курильщика.
- •Вопрос 71. Нарушение процессов управления в организме. Кибернетический подход к этиологии и патогенезу заболеваний на примере развития гипертонической болезни.
- •Вопрос 72. Причины диагностических ошибок врачей. Применение эвм в диагностике. Диагностические системы: «врач-больной», «врач-эвм», «больной-врач-эвм».
- •Вопрос 73. Применение эвм в лечебном процессе. Исовк. Автоматизация лечебного процесса. Понятие об асу. Структура "асу-Здравоохранение", "асу-больница", "асу-аптека".
- •Вопрос 74. Понятие о медицинской электронике. Классификация медицинской аппаратуры. Основные направления в развитии медицинской аппаратуры.
- •Вопрос 76. Характеристика защиты электромедицинской аппаратуры (основные степени и классы защиты от поражения электрическим током).
- •Вопрос 77. Надёжность медицинской аппаратуры. Основные категории надёжности. Классификация медицинской аппаратуры по надёжности.
- •Вопрос 78. Блок-схема диагностического прибора, работающего в масштабе реального времени. Назначение отдельных блоков.
- •Вопрос 79. Средства съёма медицинской информации. Классификация, основные требования.
- •Вопрос 80. Классификация медицинских параметров.
- •Вопрос 81. Электроды. Основные требования к электродам. Классификация.
- •Вопрос 82. Датчики медико-биологической информации.
- •Вопрос 83. Физические принципы работы термисторных, термоэлектрических, пьезоэлектрических, тензорезисторных, индуктивных, емкостных и индукционных датчиков.
- •Вопрос 84. Основные метрологические характеристики датчиков и методы их определения.
- •Вопрос 85. Устройство и принцип действия датчиков температуры (термисторный и термоэлектрический датчики).
- •Вопрос 86. Устройство и принцип действии датчиков параметров сердечно-сосудистой системы (пьезодатчик и микрофонный датчик).
- •Вопрос 87. Устройство и принцип действия датчиков параметров сердечно-сосудистой системы (датчик для измерения давления в периферических артериях, датчик для прямого измерения давления крови).
- •Вопрос 88. Устройство и принцип действия датчиков параметров системы дыхания (контактный датчик, датчик из углеродистой резины, турбинный датчик, датчик оксигемографа).
- •Вопрос 89. Датчики тканевого обмена веществ (катионочувствительный и микроспектрофотометрмческий датчики).
- •Вопрос 90. Виды физиологических сигналов и их характеристики. Назначение усилителя биоэлектрических сигналов. Основные требования к усилителям.
- •Вопрос 91. Основные метрологические характеристики усилителей и методы их определения. Искажения в усилителях.
- •Вопрос 92. Устройство и принцип действия транзистора. Обозначение транзисторов на схемах.
- •Вопрос 93. Схема усилительного каскада на транзисторе. Назначение отдельных элементов усилительного каскада. Многокаскадное усиление.
- •Вопрос 94. Устройства отображения и регистрации информации. Основные требовании. Классификации.
- •Вопрос 95. Классификация аналоговых уор. Устройство, принцип действия и метрологические характеристики различных аналоговых уор.
- •Вопрос 96. Метрологические характеристики аналоговых уор и методы их определения.
- •Вопрос 97. Дискретные уор. Классификация, устройство, принцип действия и метрологические характеристики различных уор.
- •Вопрос 98. Комбинированные уор. Классификация, устройство, принцип действия, метрологические характеристики различных уор.
- •Вопрос 99. Системы обработки медико-биологической информации. Основные требования, способы обработки. Классификация автоматических методов обработки.
- •Вопрос 100. Назначение, блок-схема, принципиальная схема и принцип действия аналогового интегратора.
- •Вопрос 101. Назначение, блок схема, принципиальная схема и принцип действия дискретного интегратора.
- •Вопрос 102. Частотные анализаторы (электрические фильтры). Метрологические характеристики, классификация.
- •Вопрос 103. Устройство к принцип действия пассивного электрического фильтра. Амплитудно-частотная характеристика полосового фильтра. Методика поиска полосы прозрачности фильтра.
- •Вопрос 104. Специальные методы обработки информации.
Вопрос 74. Понятие о медицинской электронике. Классификация медицинской аппаратуры. Основные направления в развитии медицинской аппаратуры.
Электроника - это область науки и техники, занимающаяся использованием движения электронов и ионов в вакууме, газах и твердых телах (в основном в полупроводниках).
Медицинская электроника - раздел общей электроники, занимающийся разработкой, производством и применением электронных приборов, аппаратов и систем для диагностики и лечения тех или иных заболеваний.
В настоящее время темпы внедрения новой медицинской техники в практику здравоохранения быстро нарастают. Уже сейчас сложными электронными системами оснащена вся сеть лечебных учреждений.
Кто же должен управлять техникой в медицине? По всей видимости, ответ может быть однозначным: управлять техникой в медицине должен врач. К глубокому сожалению, до сих пор технические познания большинства врачей явно недостаточны. Между тем, плохое знание возможностей электронных аппаратов, принципов их работы, или, например, правил техники безопасности при использовании электронного медицинского оборудования может привести к целому ряду диагностических ошибок, а иногда и к печальному исходу.
Классификация медицинской аппаратуры Все медицинские аппараты делятся на группы:
1. Диагностическая аппаратура - приборы для исследования физиологических функций организма: электрокардиографы, электроэнцефалографы, реографы и т.д..
2. Физиотерапевтическая аппаратура - приборы для лечения физическими факторами:
аппараты дарсонвализации, УВЧ-, СВЧ-терапии, гальванизации и т.д..
3. Рентгеновская аппаратура.
4. Стимуляторы: кардиостимуляторы, дефибрилляторы и т.д.
5. Биоуправляемые протезы.
6. Автоматическое лабораторное оборудование.
7. Вычислительная техника.
8. Приборы и системы для гипербармческой оксигенации (барокамеры).
В свою очередь диагностические приборы подразделяются на два класса:
а) универсальные приборы (полиграфы) - диагностические приборы, которые применяются для анализа работы большого количества физиологических систем человека: мониторы, автоматические сигнализаторы, автоматическая диагностика и пр.;
б) узкоспециализированные приборы: диагностические приборы сердечно-сосудистой системы, системы дыхания, системы обмена веществ и т.д..
Основные направления в развитии медицинской аппаратуры
1. Системный подход. Сущность системного подхода заключается в создании комплексов съема, передачи, хранения, обработки и отображения или регистрации медицинской информации. Только комплекс аппаратуры, а не отдельные приборы, в полной мере могут обеспечить диагностический и лечебный процессы, своевременную профилактику заболеваний, высокий уровень научных исследований.
2. Стандартизация. Одним из проявлений стандартизации является блочная конструкция медицинских электронных систем, что удобно при ремонте и повышает эффективность использования комплексов, делает их многоцелевыми.
3. Микроминиатюризация. Использование интегральных микросхем повышает надежность, снижает габариты и потребляемую мощность. При этом появляется возможность вживления электронной аппаратуры в организм больного, а также наблюдения за человеком в экстремальных условиях.
4. Совершенствование устройств съема, регистрации и отображения информации.
5. Телеметрия (передача информации на расстояние). Это позволяет обрабатывать информацию в специальных центрах квалифицированными специалистами.
6. Развитие метрологической службы в медицине. Организация проверки и испытаний медицинской измерительной аппаратуры гарантирует правильность полученных результатов.
Литература: Ремизов А.Н., Медбиофизика,-1987, с.354-358; лекции.
Вопрос 75. Электробезопасность при работе с электромедицинской аппаратурой (электрические ожоги, электрометаллизация, электрические знаки тока, электрические удары). Методы обеспечения безопасности: защитное заземление и зануление.
Одной из важнейших задач при разработке, промышленном выпуске и эксплуатации электромедицинской аппаратуры является обеспечение полной электробезопасности для обслуживающего персонала и пациентов.
Поражение организма электрическим током может произойти в виде электрической травмы или электрического удара. Электрические травмы - это результат внешнего местного воздействия тока на тело: электрические ожоги, электрометаллизация кожи, знаки тока.
Электрические ожоги являются следствием теплового действия тока, проходящего через тело человека или следствием действия электрической дуги, возникающей при коротком замыкании в установках с напряжением свыше 1000 вольт.
Электрометаллизация происходит при внедрении в кожу мельчайших частичек расплавленного под действием тока металла.
Электрические знаки тока представляют собой поражения кожи в виде резко очерченных округлых пятен, возникающие в местах входа и выхода тока из тела при плотном контакте с находящимися под напряжением частями.
Электрические удары - это возбуждение тканей организма под действием тока, сопровождающиеся судорожным сокращением мышц. Электрические удары могут вызвать тяжёлые повреждения внутренних органов: сердца, легких, центральной нервной системы и др. В результате электрического удара может наступить расстройство сердечной деятельности (нарушение ритма, фибрилляция желудочков сердца), расстройство дыхания, шок, в особо тяжелых случаях приводящие к смертельному исходу.
При протекании тока в теле человека создается напряжение, которое называется напряжением прикосновения. Для снижения величины напряжения прикосновения и обеспечения электробезопасности устраивают защитное заземление или зануление.
Защитное заземление - это надежное соединение прибора или его части с землёй. Сопротивление защитного заземления, применяемого при эксплуатации электромедицинской аппаратуры, не должно быть более 4 Ом. При наличии заземления ток на участке корпус-земля будет разветвляться, и поскольку сопротивление заземления 4 Ома, а человека - около 1000 Ома то ток, проходящий через человека при наличии защитного заземления, оказывается значительно меньшим, чем при отсутствии заземления.
Зануление - это соединение корпуса прибора с нулевым проводом сети переменного тока. При наличии зануления, в случае соединения цепи с корпусом, в подводящих проводах возникает очень сильный ток, приводящий к перегоранию плавких предохранителей и выключению прибора. Однако зануление аппарата не гарантирует полную электробезопасность. Если нулевой провод будет оборван, то соединенный с фазой корпус будет находиться под фазным напряжением по отношению к земле и прикосновение к этому корпусу будет опасно для жизни. Поэтому для обеспечения лучшей степени безопасности аппарат не только зануляют, но и заземляют.
Литература: Ремизов А.Н., Медбиофизика,-1987, с.354-360; лекции.