
- •Вопрос 1. Определение биофизики как науки, предмет и методы исследования. Основные разделы. Связь биофизики с другими естественными науками. Значение биофизики для медицины.
- •Вопрос 2. Современные представления о свете. Интерференция света. Условия интерференции света. Интерферометры: устройство, применение. Интерференционный микроскоп.
- •Вопрос 3. Дифракция света. Дифракционная решетка. Дифракционный спектр. Дифракция электромагнитных волн на пространственных структурах. Основы рентгеноструктурного анализа. Формула Вульфа-Бреггов.
- •Вопрос 4. Голография. Принципы получения и восстановления голограммы. Применение голографии в медицине.
- •Вопрос 5. Поляризация света. Двойное лучепреломление. Поляризационные устройства: Призма Николя, поляроиды.
- •Вопрос 6. Оптическая активность веществ. Устройство и принцип действия поляриметра-сахариметра. Дисперсия оптической активности. Закон Био. Поляризационный микроскоп.
- •Вопрос 7. Геометрическая оптика. Аберрация линз и способы ее устранения.
- •Вопрос 8. Полное внутреннее отражение света от границы раздела двух сред. Рефрактометрия. Волоконные световоды: устройство, принцип действия, использование в медицине.
- •Вопрос 9. Оптически система глаза. Аккомодация и разрешающая способность зрения. Аномалии рефракции зрения (миопия, гиперметропия, пресбкопия, астигматизм). Происхождение и их коррекция.
- •Вопрос 10. Информационно-биологические процессы. Первичный механизм зрения. Ретиналь. Цикл превращения родопсина.
- •Вопрос 11. Адаптация зрения. Закон Вебера-Фехнера. Амплитудная характеристика зрения. Основные м вспомогательные механизмы адаптации.
- •Вопрос 12. Оптический микроскоп: устройство, увеличение, разрешение. Формула Аббе. Ультрафиолетовый микроскоп: устройство, принцип действия, преимущества. Иммерсионные системы.
- •Вопрос 13. Волновые свойства частиц. Дифракция электронов. Формула де Бройля. Электростатическая линза. Электронный микроскоп (устройство, увеличение, предел разрешения) и его применение в медицине.
- •Вопрос 14. Тепловое излучение тел и его основные характеристики. Понятие об абсолютно чёрном и сером телах. Закон Кирхгофа.
- •Вопрос 15. Законы Стефана-Больцмана. Излучение тела человека. Тепловизор: принцип действия и использование в диагностических целях.
- •Вопрос 16. Первичные стадии фотобиологических процессов. Излучение м поглощение энергия атомами и молекулами. Полная энергия молекулы. Спектр поглощения.
- •Вопрос 17. Пути использования молекулой энергии поглощённого кванта. Люминесценция. Правило Стокса. Механизм миграция энергии.
- •Вопрос 18. Первичные и вторичные фотохимические реакции.
- •Вопрос 19. Спектр действия фотобиологических процессов. Механизм бактериостатического и бактерицидного действия ультрафиолетовых лучей.
- •Вопрос 20. Механизм канцерогенного действия уфл и инактивации ферментов.
- •Вопрос 21. Закон Бугера - Ламберта - Бера. Спектрофотометрия, микроспектрофотометрия.
- •Вопрос 24. Применение рентгеновского излучения в медицине: рентгеноскопия, рентгенография, компьютерная томография. Физические основы этих методов. Рентгенотерапия.
- •Вопрос 25. Радиоактивность. Основном закон радиоактивного распада. Альфа-, бета-, и гамма - распад атомных ядер.
- •Вопрос 26. Взаимодействие ионизирующего излучения с веществом. Ионизационные потери. Проникающая способность.
- •Вопрос 27. Дозиметрия ионизирующего излучения. Поглощённая и эквивалентная дозы. Коэффициент качества. Летальная и полулетальная дозы.
- •Вопрос 28. Использование радионуклидов в медицине. Радиодиагностика. Лучевая терапия. Аппарат гамма-терапии. Активационный анализ. Сканирование.
- •Вопрос 29. Биофизические основы действия ионизирующих излучений на организм. Основные стадии развития лучевой болезни. Принципы химической защиты от ионизирующего излучения.
- •Вопрос 30. Источники когерентного излучения. Индуцированное излучение. Устройство и принцип действия рубинового лазера. Использование лазерного излучения в медицине.
- •Вопрос 31. Основные режимы работы лазера. Импульсная мощность лазера. Механизм термического, ионизирующего к ударного действия лазерного излучения на организм.
- •Вопрос 32. Биофизические основы термического, механического и химического действия ультразвука на клетки и ткани организма. Механизм кавитации.
- •Вопрос 33. Использование уз в диагностике и лечении. Эхолокация. Допплерография. Ультразвуковая физиотерапия.
- •Вопрос 35. Механизм действия постоянного магнитного поля на организм. Механизм термического и атермического действия полей свч на организм.
- •Вопрос 36. Использование электромагнитных полей в физиотерапии (увч-терапия, диатермия, дарсонвализация). Механизм действия на организм.
- •Вопрос 37. Электрический импульс и импульсный ток. Виды импульсов. Дифференцирующие к интегрирующие цепи. Механизм действия импульсных токов на организм.
- •Вопрос 40. Биофизика слуха. Понятие о звукопроводящей и звуковоспринимающей системах уха. Гидродинамическая теории слуха. Физические основы звуковых методов исследования.
- •Вопрос 41. Структурная организация клетки. Принцип компартментатностн. Современные методы исследования биологических мембран. Структура мембран.
- •Вопрос 42. Субъединицы мембран. Синтез мембран. Течение мембран. Биологическая роль мембран. Клеточная проницаемость. Значение изучения клеточной проницаемости для медицины.
- •Вопрос 43. Диффузия. Концентрационный градиент. Законы Фика и Коллендера-Берлунда. Мембранный транспорт. Теория простой диффузии.
- •Вопрос 45. Теория активного транспорта веществ. Кинетика переноса калия м натрия. Работа активного перекоса ионов. Понятие об ионных каналах.
- •Вопрос 46. Происхождение мембранного потенциала. Роль активного транспорта ионов и доннановского равновесия в генезе потенциала покоя. Уравнение Гольдмана-Ходжкина-Катца.
- •Вопрос 47. Изменение мембранного потенциала при раздражения. Возбудимость клетки. Понятие о локальном ответе. Критический уровень деполяризации. Механизм генерации потенциала действия.
- •Вопрос 48. Электрический диполь. Анализ электрического поля диполя в гомогенном объёмном проводнике.
- •Вопрос 49. Контактное и дистантное отведения биопотенциалов. Биполярное к униполярное отведения. Показания к применению разных видов отведения.
- •Вопрос 51. Электропроводность органов и тканей. Электронная, дипольиая, мембранная и электролитическая теория поляризации. Поляризационная ёмкость, её происхождение и диагностическая роль.
- •Вопрос 52. Импеданс тканей организма. Теория дисперсии импеданса. Эквивалентная электрическая схема тканей организма.
- •Вопрос 53. Оценка жизнеспособности тканей по частотной зависимости импеданса. Использование формулы Стокса для изучения молекулярной структуры тканей. Физические основы реографии.
- •Вопрос 54. Электрокинетические явления: электрофорез, электроосмос, потенциал течения и седиметации. Происхождение электрокинетического потенциала - теория Дерягниа-Штерна.
- •Вопрос 55. Использование электрофореза в медицине. Электрофореграфия. Терапевтический электрофорез. Электрокинетический потенциал и иммунитет.
- •Вопрос 56. Биомеханика. Понятие о биокинематических цепях. Модели Гука, Ньютона, Кельвина-Фойгта.
- •Вопрос 57. Биомеханика дыхания. Механизмы вдоха и выдоха. Характеристики дыхательных сопротивлений. Принцип расчёта работы дыхания по pV-диаграмме.
- •Вопрос 58. Поверхностное натяжение биологических жидкостей. Сурфактанты и их роль в механизме расправления лёгочных альвеол. Рабочая характеристика альвеолы.
- •Вопрос 59. Эффективность дыхания. Рабочая характеристика дыхания. Причины падения эффективности дыхания при лёгочных заболеваниях.
- •Вопрос 61. Биомеханика сердца. Трехкомпонентная модель мышцы. Напряжение миокарда. Зависимость напряжения от деформации.
- •Вопрос 62. Биомеханика сердца. Сила миокарда. Закон Франка-Стерлинга. Принципы расчёта работы и мощности сердца. PV-диаграмма.
- •Вопрос 63. Эффективность сердца. Рабочая характеристика сердца. Роль предсердий.
- •Вопрос 64. Моделирование. Основные виды моделирования.
- •Вопрос 65. Информация. Количественная и качественная оценка информации. Теория игр.
- •Вопрос 66. Теория управления. Понятие о системе управления. Прямые и обратные связи.
- •Вопрос 67. Принципы работы системы автоматического регулирования (сар) с воздействием по рассогласованию (на примере регуляции кровяного артериального давления при кровопотере).
- •Вопрос 68. Принципы работы системы автоматического регулирования с воздействием по возмущению (на примере регуляция уровня кислорода в крови при экспериментальном закрытом пневмотораксе).
- •Вопрос 69. Процессы управления в биологических системах. Устойчивость н надежность систем автоматического регулирования. Принципы обеспечения высокой надежности биологических систем.
- •Вопрос 70. Нарушение процессов управления в организме. Кибернетический подход к этиологии и патогенезу заболеваний на примере развития рака легкого у курильщика.
- •Вопрос 71. Нарушение процессов управления в организме. Кибернетический подход к этиологии и патогенезу заболеваний на примере развития гипертонической болезни.
- •Вопрос 72. Причины диагностических ошибок врачей. Применение эвм в диагностике. Диагностические системы: «врач-больной», «врач-эвм», «больной-врач-эвм».
- •Вопрос 73. Применение эвм в лечебном процессе. Исовк. Автоматизация лечебного процесса. Понятие об асу. Структура "асу-Здравоохранение", "асу-больница", "асу-аптека".
- •Вопрос 74. Понятие о медицинской электронике. Классификация медицинской аппаратуры. Основные направления в развитии медицинской аппаратуры.
- •Вопрос 76. Характеристика защиты электромедицинской аппаратуры (основные степени и классы защиты от поражения электрическим током).
- •Вопрос 77. Надёжность медицинской аппаратуры. Основные категории надёжности. Классификация медицинской аппаратуры по надёжности.
- •Вопрос 78. Блок-схема диагностического прибора, работающего в масштабе реального времени. Назначение отдельных блоков.
- •Вопрос 79. Средства съёма медицинской информации. Классификация, основные требования.
- •Вопрос 80. Классификация медицинских параметров.
- •Вопрос 81. Электроды. Основные требования к электродам. Классификация.
- •Вопрос 82. Датчики медико-биологической информации.
- •Вопрос 83. Физические принципы работы термисторных, термоэлектрических, пьезоэлектрических, тензорезисторных, индуктивных, емкостных и индукционных датчиков.
- •Вопрос 84. Основные метрологические характеристики датчиков и методы их определения.
- •Вопрос 85. Устройство и принцип действия датчиков температуры (термисторный и термоэлектрический датчики).
- •Вопрос 86. Устройство и принцип действии датчиков параметров сердечно-сосудистой системы (пьезодатчик и микрофонный датчик).
- •Вопрос 87. Устройство и принцип действия датчиков параметров сердечно-сосудистой системы (датчик для измерения давления в периферических артериях, датчик для прямого измерения давления крови).
- •Вопрос 88. Устройство и принцип действия датчиков параметров системы дыхания (контактный датчик, датчик из углеродистой резины, турбинный датчик, датчик оксигемографа).
- •Вопрос 89. Датчики тканевого обмена веществ (катионочувствительный и микроспектрофотометрмческий датчики).
- •Вопрос 90. Виды физиологических сигналов и их характеристики. Назначение усилителя биоэлектрических сигналов. Основные требования к усилителям.
- •Вопрос 91. Основные метрологические характеристики усилителей и методы их определения. Искажения в усилителях.
- •Вопрос 92. Устройство и принцип действия транзистора. Обозначение транзисторов на схемах.
- •Вопрос 93. Схема усилительного каскада на транзисторе. Назначение отдельных элементов усилительного каскада. Многокаскадное усиление.
- •Вопрос 94. Устройства отображения и регистрации информации. Основные требовании. Классификации.
- •Вопрос 95. Классификация аналоговых уор. Устройство, принцип действия и метрологические характеристики различных аналоговых уор.
- •Вопрос 96. Метрологические характеристики аналоговых уор и методы их определения.
- •Вопрос 97. Дискретные уор. Классификация, устройство, принцип действия и метрологические характеристики различных уор.
- •Вопрос 98. Комбинированные уор. Классификация, устройство, принцип действия, метрологические характеристики различных уор.
- •Вопрос 99. Системы обработки медико-биологической информации. Основные требования, способы обработки. Классификация автоматических методов обработки.
- •Вопрос 100. Назначение, блок-схема, принципиальная схема и принцип действия аналогового интегратора.
- •Вопрос 101. Назначение, блок схема, принципиальная схема и принцип действия дискретного интегратора.
- •Вопрос 102. Частотные анализаторы (электрические фильтры). Метрологические характеристики, классификация.
- •Вопрос 103. Устройство к принцип действия пассивного электрического фильтра. Амплитудно-частотная характеристика полосового фильтра. Методика поиска полосы прозрачности фильтра.
- •Вопрос 104. Специальные методы обработки информации.
Вопрос 52. Импеданс тканей организма. Теория дисперсии импеданса. Эквивалентная электрическая схема тканей организма.
Импеданс Z - полное электрическое сопротивление, измеренное с помощью переменного тока, состоит из активного и реактивного (емкостного, т.к. индуктивностью живые ткани не обладают) сопротивлений.
На векторной диаграмме при последовательном соединении активного R и реактивного емкостного Хс сопротивлений импеданс - их геометрическая сумма:
где С - емкость, - циклическая частота.
Импеданс живых тканей обладает целым рядом свойств, которые исчезают при гибели ткани:
- чем жизнеспособнее ткань, тем больше импеданс, так как больше угол сдвига фаз между током и напряжением в электрической цепи;
- импеданс существенно зависит от частоты и т.д.
Теория дисперсии импеданса – зависимость импеданса Z от частоты v получила название дисперсии импеданса. Такая зависимость имеет примерно следующий вид:
Время релаксации - минимальное время, которое необходимо для к возникновения ЭДС поляризации.
Шван предположил, что импеданс живой ткани - это статистическая величина, которая определяется в основном соотношением времени релаксации молекулы , в течение которого, по мнению Швана, возникает минимальная величина поляризации, и оставшейся частью полупериода тока, когда возникшая ЭДС поляризации возрастает (график А). Именно ЭДС поляризации и повинна в значительном увеличении импеданса ткани.
При увеличении частоты тока длительность полупериода, очевидно, уменьшается и, по мнению Швана, импеданс тоже становится меньше, т.к. ЭДС поляризации теперь существует в течение меньшей части полупериода (график В).
Когда частота приложенного напряжения становится такой, что выполняется условие: = Т / 2 (график С), то, при дальнейшем увеличении частоты (уменьшении периода) приложенного напряжения, ЭДС поляризации не возникает и прекращается дисперсия импеданса (график Д).
Эквивалентная электрическая схема живой ткани
Rм - сопротивление мембраны, См - емкость мембраны, Ri - внутреннее сопротивление клетки.
Литература: Лекционные записи.
Вопрос 53. Оценка жизнеспособности тканей по частотной зависимости импеданса. Использование формулы Стокса для изучения молекулярной структуры тканей. Физические основы реографии.
Дисперсия импеданса наблюдается только у живой ткани. Чем более выражена дисперсия импеданса, тем более жизнеспособна ткань. Это обстоятельство используется для оценки жизнеспособности органов и тканей, в частности для определения жизнеспособности органов при пересадке. Часто вместо снятия всей зависимости
определяют так называемый коэффициент поляризации Тарусова: Кпол = Z1 / Z2, где Z1- импеданс ткани, измеренный на частоте 104 Гц, Z2 - импеданс ткани, измеренный на частоте 106 Гц. Чем больше коэффициент поляризации, тем более ткань жизнеспособна. Так коэффициент поляризации здоровой печеночной ткани человека бывает равен от 9 до 10, при гибели ткани этот показатель стремится к единице.
Пользуясь основными положениями теории Швана, можно изучать молекулярную структуру ткани на целостном живом организме, что очень важно для целей диагностики. В соответствии с этой теорией время релаксации молекулы, при критической частоте в точности равно длительности полупериода = Т / 2. Стокс предложил формулу, в которой устанавливается зависимость между временем релаксации молекулы и величиной ее радиуса: = 4 r3/ (K T), где - время релаксации молекулы, - коэффициент вязкости среды, r - радиус молекулы, K - постоянная Больцмана, Т - абсолютная температура.
З
ная
критическую частоту кр
можно определить время релаксации
молекулы по формуле:
= 1 / (2кр),
теперь подставим это значение в формулу
Стокса: 1 / (2кр)
= 4
r3/
(K
T), откуда можно найти радиус
молекулы:
Радиус молекулы есть уникальная величина, по которой можно идентифицировать данный вид молекул.
Реография - метод регистрации изменений импеданса органов и тканей организма с помощью переменного тока с частотой 1-3 Кгц, обусловленных изменением кровенаполнения. Чем больше крови в органе, тем меньше импеданс, т.к. на этих частотах кровь очень хорошо проводит электрический ток.
Пример 1. Реоэнцефалография - реографический метод исследования мозгового кровообращения. Измеряется импеданс левого Zл и импеданс правого полушария Zп. Пусть левое полушарие травмировано.
Если Zл > Zп - тромбоз мозговых сосудов, т.к. крови в левом полушарии меньше, импеданс больше;
если Zл < Zп - кровоизлияние в мозг, т.к. крови в левом полушарии больше, импеданс меньше.
Пример 2. Кожно-гальваническая реакция (КГР) - уменьшение импеданса в ответ на действие раздражителя любой модальности (боль, звук, свет и т.п.). С помощью КГР можно объективизировать определение порогов ощущения у больного.
Литература: Лекционные записи.