
- •Вопрос 1. Определение биофизики как науки, предмет и методы исследования. Основные разделы. Связь биофизики с другими естественными науками. Значение биофизики для медицины.
- •Вопрос 2. Современные представления о свете. Интерференция света. Условия интерференции света. Интерферометры: устройство, применение. Интерференционный микроскоп.
- •Вопрос 3. Дифракция света. Дифракционная решетка. Дифракционный спектр. Дифракция электромагнитных волн на пространственных структурах. Основы рентгеноструктурного анализа. Формула Вульфа-Бреггов.
- •Вопрос 4. Голография. Принципы получения и восстановления голограммы. Применение голографии в медицине.
- •Вопрос 5. Поляризация света. Двойное лучепреломление. Поляризационные устройства: Призма Николя, поляроиды.
- •Вопрос 6. Оптическая активность веществ. Устройство и принцип действия поляриметра-сахариметра. Дисперсия оптической активности. Закон Био. Поляризационный микроскоп.
- •Вопрос 7. Геометрическая оптика. Аберрация линз и способы ее устранения.
- •Вопрос 8. Полное внутреннее отражение света от границы раздела двух сред. Рефрактометрия. Волоконные световоды: устройство, принцип действия, использование в медицине.
- •Вопрос 9. Оптически система глаза. Аккомодация и разрешающая способность зрения. Аномалии рефракции зрения (миопия, гиперметропия, пресбкопия, астигматизм). Происхождение и их коррекция.
- •Вопрос 10. Информационно-биологические процессы. Первичный механизм зрения. Ретиналь. Цикл превращения родопсина.
- •Вопрос 11. Адаптация зрения. Закон Вебера-Фехнера. Амплитудная характеристика зрения. Основные м вспомогательные механизмы адаптации.
- •Вопрос 12. Оптический микроскоп: устройство, увеличение, разрешение. Формула Аббе. Ультрафиолетовый микроскоп: устройство, принцип действия, преимущества. Иммерсионные системы.
- •Вопрос 13. Волновые свойства частиц. Дифракция электронов. Формула де Бройля. Электростатическая линза. Электронный микроскоп (устройство, увеличение, предел разрешения) и его применение в медицине.
- •Вопрос 14. Тепловое излучение тел и его основные характеристики. Понятие об абсолютно чёрном и сером телах. Закон Кирхгофа.
- •Вопрос 15. Законы Стефана-Больцмана. Излучение тела человека. Тепловизор: принцип действия и использование в диагностических целях.
- •Вопрос 16. Первичные стадии фотобиологических процессов. Излучение м поглощение энергия атомами и молекулами. Полная энергия молекулы. Спектр поглощения.
- •Вопрос 17. Пути использования молекулой энергии поглощённого кванта. Люминесценция. Правило Стокса. Механизм миграция энергии.
- •Вопрос 18. Первичные и вторичные фотохимические реакции.
- •Вопрос 19. Спектр действия фотобиологических процессов. Механизм бактериостатического и бактерицидного действия ультрафиолетовых лучей.
- •Вопрос 20. Механизм канцерогенного действия уфл и инактивации ферментов.
- •Вопрос 21. Закон Бугера - Ламберта - Бера. Спектрофотометрия, микроспектрофотометрия.
- •Вопрос 24. Применение рентгеновского излучения в медицине: рентгеноскопия, рентгенография, компьютерная томография. Физические основы этих методов. Рентгенотерапия.
- •Вопрос 25. Радиоактивность. Основном закон радиоактивного распада. Альфа-, бета-, и гамма - распад атомных ядер.
- •Вопрос 26. Взаимодействие ионизирующего излучения с веществом. Ионизационные потери. Проникающая способность.
- •Вопрос 27. Дозиметрия ионизирующего излучения. Поглощённая и эквивалентная дозы. Коэффициент качества. Летальная и полулетальная дозы.
- •Вопрос 28. Использование радионуклидов в медицине. Радиодиагностика. Лучевая терапия. Аппарат гамма-терапии. Активационный анализ. Сканирование.
- •Вопрос 29. Биофизические основы действия ионизирующих излучений на организм. Основные стадии развития лучевой болезни. Принципы химической защиты от ионизирующего излучения.
- •Вопрос 30. Источники когерентного излучения. Индуцированное излучение. Устройство и принцип действия рубинового лазера. Использование лазерного излучения в медицине.
- •Вопрос 31. Основные режимы работы лазера. Импульсная мощность лазера. Механизм термического, ионизирующего к ударного действия лазерного излучения на организм.
- •Вопрос 32. Биофизические основы термического, механического и химического действия ультразвука на клетки и ткани организма. Механизм кавитации.
- •Вопрос 33. Использование уз в диагностике и лечении. Эхолокация. Допплерография. Ультразвуковая физиотерапия.
- •Вопрос 35. Механизм действия постоянного магнитного поля на организм. Механизм термического и атермического действия полей свч на организм.
- •Вопрос 36. Использование электромагнитных полей в физиотерапии (увч-терапия, диатермия, дарсонвализация). Механизм действия на организм.
- •Вопрос 37. Электрический импульс и импульсный ток. Виды импульсов. Дифференцирующие к интегрирующие цепи. Механизм действия импульсных токов на организм.
- •Вопрос 40. Биофизика слуха. Понятие о звукопроводящей и звуковоспринимающей системах уха. Гидродинамическая теории слуха. Физические основы звуковых методов исследования.
- •Вопрос 41. Структурная организация клетки. Принцип компартментатностн. Современные методы исследования биологических мембран. Структура мембран.
- •Вопрос 42. Субъединицы мембран. Синтез мембран. Течение мембран. Биологическая роль мембран. Клеточная проницаемость. Значение изучения клеточной проницаемости для медицины.
- •Вопрос 43. Диффузия. Концентрационный градиент. Законы Фика и Коллендера-Берлунда. Мембранный транспорт. Теория простой диффузии.
- •Вопрос 45. Теория активного транспорта веществ. Кинетика переноса калия м натрия. Работа активного перекоса ионов. Понятие об ионных каналах.
- •Вопрос 46. Происхождение мембранного потенциала. Роль активного транспорта ионов и доннановского равновесия в генезе потенциала покоя. Уравнение Гольдмана-Ходжкина-Катца.
- •Вопрос 47. Изменение мембранного потенциала при раздражения. Возбудимость клетки. Понятие о локальном ответе. Критический уровень деполяризации. Механизм генерации потенциала действия.
- •Вопрос 48. Электрический диполь. Анализ электрического поля диполя в гомогенном объёмном проводнике.
- •Вопрос 49. Контактное и дистантное отведения биопотенциалов. Биполярное к униполярное отведения. Показания к применению разных видов отведения.
- •Вопрос 51. Электропроводность органов и тканей. Электронная, дипольиая, мембранная и электролитическая теория поляризации. Поляризационная ёмкость, её происхождение и диагностическая роль.
- •Вопрос 52. Импеданс тканей организма. Теория дисперсии импеданса. Эквивалентная электрическая схема тканей организма.
- •Вопрос 53. Оценка жизнеспособности тканей по частотной зависимости импеданса. Использование формулы Стокса для изучения молекулярной структуры тканей. Физические основы реографии.
- •Вопрос 54. Электрокинетические явления: электрофорез, электроосмос, потенциал течения и седиметации. Происхождение электрокинетического потенциала - теория Дерягниа-Штерна.
- •Вопрос 55. Использование электрофореза в медицине. Электрофореграфия. Терапевтический электрофорез. Электрокинетический потенциал и иммунитет.
- •Вопрос 56. Биомеханика. Понятие о биокинематических цепях. Модели Гука, Ньютона, Кельвина-Фойгта.
- •Вопрос 57. Биомеханика дыхания. Механизмы вдоха и выдоха. Характеристики дыхательных сопротивлений. Принцип расчёта работы дыхания по pV-диаграмме.
- •Вопрос 58. Поверхностное натяжение биологических жидкостей. Сурфактанты и их роль в механизме расправления лёгочных альвеол. Рабочая характеристика альвеолы.
- •Вопрос 59. Эффективность дыхания. Рабочая характеристика дыхания. Причины падения эффективности дыхания при лёгочных заболеваниях.
- •Вопрос 61. Биомеханика сердца. Трехкомпонентная модель мышцы. Напряжение миокарда. Зависимость напряжения от деформации.
- •Вопрос 62. Биомеханика сердца. Сила миокарда. Закон Франка-Стерлинга. Принципы расчёта работы и мощности сердца. PV-диаграмма.
- •Вопрос 63. Эффективность сердца. Рабочая характеристика сердца. Роль предсердий.
- •Вопрос 64. Моделирование. Основные виды моделирования.
- •Вопрос 65. Информация. Количественная и качественная оценка информации. Теория игр.
- •Вопрос 66. Теория управления. Понятие о системе управления. Прямые и обратные связи.
- •Вопрос 67. Принципы работы системы автоматического регулирования (сар) с воздействием по рассогласованию (на примере регуляции кровяного артериального давления при кровопотере).
- •Вопрос 68. Принципы работы системы автоматического регулирования с воздействием по возмущению (на примере регуляция уровня кислорода в крови при экспериментальном закрытом пневмотораксе).
- •Вопрос 69. Процессы управления в биологических системах. Устойчивость н надежность систем автоматического регулирования. Принципы обеспечения высокой надежности биологических систем.
- •Вопрос 70. Нарушение процессов управления в организме. Кибернетический подход к этиологии и патогенезу заболеваний на примере развития рака легкого у курильщика.
- •Вопрос 71. Нарушение процессов управления в организме. Кибернетический подход к этиологии и патогенезу заболеваний на примере развития гипертонической болезни.
- •Вопрос 72. Причины диагностических ошибок врачей. Применение эвм в диагностике. Диагностические системы: «врач-больной», «врач-эвм», «больной-врач-эвм».
- •Вопрос 73. Применение эвм в лечебном процессе. Исовк. Автоматизация лечебного процесса. Понятие об асу. Структура "асу-Здравоохранение", "асу-больница", "асу-аптека".
- •Вопрос 74. Понятие о медицинской электронике. Классификация медицинской аппаратуры. Основные направления в развитии медицинской аппаратуры.
- •Вопрос 76. Характеристика защиты электромедицинской аппаратуры (основные степени и классы защиты от поражения электрическим током).
- •Вопрос 77. Надёжность медицинской аппаратуры. Основные категории надёжности. Классификация медицинской аппаратуры по надёжности.
- •Вопрос 78. Блок-схема диагностического прибора, работающего в масштабе реального времени. Назначение отдельных блоков.
- •Вопрос 79. Средства съёма медицинской информации. Классификация, основные требования.
- •Вопрос 80. Классификация медицинских параметров.
- •Вопрос 81. Электроды. Основные требования к электродам. Классификация.
- •Вопрос 82. Датчики медико-биологической информации.
- •Вопрос 83. Физические принципы работы термисторных, термоэлектрических, пьезоэлектрических, тензорезисторных, индуктивных, емкостных и индукционных датчиков.
- •Вопрос 84. Основные метрологические характеристики датчиков и методы их определения.
- •Вопрос 85. Устройство и принцип действия датчиков температуры (термисторный и термоэлектрический датчики).
- •Вопрос 86. Устройство и принцип действии датчиков параметров сердечно-сосудистой системы (пьезодатчик и микрофонный датчик).
- •Вопрос 87. Устройство и принцип действия датчиков параметров сердечно-сосудистой системы (датчик для измерения давления в периферических артериях, датчик для прямого измерения давления крови).
- •Вопрос 88. Устройство и принцип действия датчиков параметров системы дыхания (контактный датчик, датчик из углеродистой резины, турбинный датчик, датчик оксигемографа).
- •Вопрос 89. Датчики тканевого обмена веществ (катионочувствительный и микроспектрофотометрмческий датчики).
- •Вопрос 90. Виды физиологических сигналов и их характеристики. Назначение усилителя биоэлектрических сигналов. Основные требования к усилителям.
- •Вопрос 91. Основные метрологические характеристики усилителей и методы их определения. Искажения в усилителях.
- •Вопрос 92. Устройство и принцип действия транзистора. Обозначение транзисторов на схемах.
- •Вопрос 93. Схема усилительного каскада на транзисторе. Назначение отдельных элементов усилительного каскада. Многокаскадное усиление.
- •Вопрос 94. Устройства отображения и регистрации информации. Основные требовании. Классификации.
- •Вопрос 95. Классификация аналоговых уор. Устройство, принцип действия и метрологические характеристики различных аналоговых уор.
- •Вопрос 96. Метрологические характеристики аналоговых уор и методы их определения.
- •Вопрос 97. Дискретные уор. Классификация, устройство, принцип действия и метрологические характеристики различных уор.
- •Вопрос 98. Комбинированные уор. Классификация, устройство, принцип действия, метрологические характеристики различных уор.
- •Вопрос 99. Системы обработки медико-биологической информации. Основные требования, способы обработки. Классификация автоматических методов обработки.
- •Вопрос 100. Назначение, блок-схема, принципиальная схема и принцип действия аналогового интегратора.
- •Вопрос 101. Назначение, блок схема, принципиальная схема и принцип действия дискретного интегратора.
- •Вопрос 102. Частотные анализаторы (электрические фильтры). Метрологические характеристики, классификация.
- •Вопрос 103. Устройство к принцип действия пассивного электрического фильтра. Амплитудно-частотная характеристика полосового фильтра. Методика поиска полосы прозрачности фильтра.
- •Вопрос 104. Специальные методы обработки информации.
Вопрос 26. Взаимодействие ионизирующего излучения с веществом. Ионизационные потери. Проникающая способность.
Известно, что при взаимодействии ионизирующего излучения с веществом, необходимо рассмотреть три типа излучения (- - -излучение) и их воздействие на ткань:
- при взаимодействии -частиц с ядрами возможны ядерные реакции и рассеивание - частиц, а также ионизация атомов;
- -излучение, так же как и -излучение вызывает ионизацию вещества. Кроме того, при торможении
электронов может возникнуть тормозное рентгеновское излучение;
- при попадании -излучения на вещество могут произойти характерные процессы: когерентное рассеивание, эффект Комптона, фотоэффект, но могут быть и специфические процессы: образование пары электрон-позитрон и фотоядерные реакции.
Взаимодействие частиц с веществом оценивается количественно тремя величинами:
-0 ионизационными потерями,
- удельной ионизацией
- проникающей способностью.
Ионизационные потери - количество энергии, расходуемое ионизирующей частицей на единицу пути dЕ/dx.
Удельная ионизация-число пар ионов, образующихся на единице пути: Nи = (dЕ/dx) / и, где и - затрата энергии на образование 1 пары ионов.
Проникающая способность - длина пути, пройденного ионизирующей частицей в веществе до полной остановки. Пробег определяется энергией частицы. Когда частица израсходует свою энергию, она остановится.
При взаимодействии фотонного излучения с веществом может возникнуть:
- когерентное рассеяние,
- фотоэффект,
- эффект Комптона.
Эти виды взаимодействия были рассмотрены при взаимодействии рентгеновского излучения с веществом. Литература: Ремизов А.Н., Медбиофизика,-1987, с.562-565. Лекции.
Вопрос 27. Дозиметрия ионизирующего излучения. Поглощённая и эквивалентная дозы. Коэффициент качества. Летальная и полулетальная дозы.
Для оценки воздействия и остаточных явлений необходимо оценивать уровень ионизирующего излучения. С этой целью используются специальные детекторы ионизирующего излучения. Они подразделяются на следующие группы:
а) следовые: камеры Вильсона, пузырьковые и т.д.;
б) счетчики: импульсные ионизационные камеры, счетчики Гейгера, люминесцентные, полупроводниковые и другие;
в) интегральные детекторы: фотопленки, ионизационные камеры непрерывного действия и др.
Воздействие ионизирующего излучения на организм определяется поглощенной дозой Dпогл. Она измеряется в Греях (Гр). Это доза излучения, при которой облученному веществу массой 1 кг перелается энергия ионизирующего излучения, равная 1Дж.
Внесистемной единицей поглощенной дозы является рад: 1рад=10-2Гр.
Казалось бы, что, для нахождения поглощённой дозы, необходимо знать интенсивность падающего на вещество излучения Iо и интенсивность прошедшего через вещество излучения I. Далее по формуле определить поглощенную дозу: Dпогл = (Iо - I ) / m. Однако это невозможно d связи с тем, что наряду с поглощением существует и рассеяние излучения.
Для оценки поглощенной дозы можно измерить действие излучения на воздух, окружающий тело. С этой целью вводится понятие экспозиционной дозы фотонного излучения (рентгеновского и -излучения): Х = Q / m, которая является мерой ионизации воздуха рентгеновскими и -лучами. В этой формуле Q - электрический заряд ионов одного знака, образующихся при ионизации m килограммов сухого атмосферного воздуха при нормальных условиях.
В системе СИ за единицу экспозиционной дозы принят 1 Кулон на килограмм (1 Кл/кг).
На практике чаще применяют внесистемную единицу экспозиционной дозы - рентген (р): 1 р = 2,5810-4 Кл/кг.
Между поглощенной и экспозиционной дозами существует связь: Dпогл = f X, где f - коэффициент, зависящий от облучаемого вещества, энергии фотонов, выбора системы единиц. Для воды и мягких биологических тканей человека f =1 в системе СГС, следовательно, поглощённая доза в радах численно равна соответствующей экспозиционной дозе в рентгенах. Это и обуславливает удобство использования внесистемных единиц - рада и рентгена.
Действие на человека различных излучений зависит не только от поглощённой дозы, но и от самого вида излучения.
В дозиметрии принято сравнивать биологические эффекты различных излучений с соответствующими эффектами, вызванными фотонным излучением.
Коэффициент k, показывающий, во сколько раз эффективность биологического действия данного вида излучения больше чем фотонного, при одинаковых поглощенных дозах, называется коэффициентом качества.
Так, для -излучения k=20, для протонов -10.
Произведение Dпогл k = Dэкв называется эквивалентной дозой. Эквивалентная доза измеряется в Зивертах (Зв), хотя имеет ту же размерность, что и поглощенная доза.
Внесистемной единицей эквивалентной дозы является 1бэр: 1бэр=0,01 Зв.
Мощность дозы излучения - это поглощенная доза в единицу времени: N = Dпогл / t.
Для оценки воздействия И.И. используется понятие летальной LD100 и полулетальной LD50 доз.
LD100 - это такая доза, при которой погибает 100% облученных организмов.
При LD50 погибает 50% облученных организмов.
Для человека летальная доза составляет 500-600 бэр, полулетальная доза - 250-350 бэр.
Литература: Ремизов А.Н., Медбиофизика, -1987, с.577-582. Лекции.