Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Логистика Барлиани ИСПРАВЛЕН.docx
Скачиваний:
8
Добавлен:
01.03.2025
Размер:
4.26 Mб
Скачать

5.9. Прогнозирование в распределительной логистике

При планировании и управлении логическими активностями часто используются различные методы и модели прогнозирования. От точности и достоверности прогнозов потребительского спроса, расходования материальных ресурсов, уровня запасов и т.п. напрямую зависит эффек­тивность реализации практически всех логистических концепций, особенно JIT, DDT. С наиболее общих позиций прогноз — это вероятностное суждение о состоянии логистического процесса, системы или отдельных элементов в определенный момент в буду­щем и (или) альтернативных путях достижения этого состояния. Прогнозирование является неотъемлемой частью различных ви­дов логистического планирования: стратегического, тактического, оперативного. Являясь средством научного обоснования плана, про­гноз должен содержать необходимую информацию для планирова­ния, включать вероятную оценку характера развития процесса ло­гистического менеджмента и возможного пути реализации целей, поставленных перед ЛС.

Экономический прогноз позволяет установить возможные на­правления и различные варианты развития ЛС, а также помогает в выборе конкретных целей ее функционирования. Поэтому основ­ное назначение прогноза в логистике состоит в раскрытии тенден­ции изменения микро - и макрологистической среды и получения вероятностных количественных и качественных оценок динамики логистических активностей, необходимых персоналу менеджмента фирмы.

Логистические менеджеры распределения в своей практичес­кой деятельности используют различные методы прогнозирования в зависимости от требуемой точности (достоверности), объема и вида исходной информации и других факторов, причем в боль­шинстве случаев для этой цели применяются стандартные или ин­дивидуальные компьютерные программы. Основной сферой прило­жения этих методов в логистике является прогнозирование спроса и объем продаж готовой продукции.

Сегодня в логистической практике широко используются такие методы прогнозирования, как: простейшая модель экстраполяции тренда, адаптивные полиномиальные модели Брауна в различных вариациях, авторегрессионные модели, экспертные прогностические модели и другие. Каждый из перечисленных методов прогнозирования имеет преимущества и недостатки. Понятно, что одинаковые прогнозы получить посредством различных методов практически невозможно. Поэтому, если прогнозные значения, полученные разными методами, не совпадают, необходимо использовать их комбинацию.

Для получения комбинированной оценки прогноза на первом этапе необходимо с помощью известных вероятностных критериев отбросить те прогнозные оценки, которые не согласовываются с другими. Далее с целью совместной обработки оставшихся оценок прогноза для каждого из них следует найти вес метода прогнозирования. Чем менее точен результат прогноза, тем меньше его вес в комбинированном прогнозе. Весовые коэффициенты для каждого метода можно найти в их комбинации по следующей формуле (19):

(19)

где - среднеквадратическая ошибка i-го метода прогноза;

j - количество методов, участвующих в комбинированном прогнозе.

Если в комбинированном прогнозе участвуют два метода, то по формуле (19) можно рассчитать весовые коэффициенты для каждого метода, и они будут равняться:

, (20)

, (21)

После установления весовых коэффициентов можем рассчитать уточненное значение прогнозированного показателя, как средневзвешенное из всех комбинаций, то есть

, (22)

где - результат j-го прогноза.

Очевидно, что среднеквадратическая ошибка комбинированного прогноза будет равняться:

, (21)

Таким образом, осуществляется комбинированный прогноз интересующего нас процесса. Рассмотрим демонстрационный пример.

Пример. На основании ретроспективной информации необходимо произвести прогнозирование объемов сбыта для фирмы на 2013 год с использованием двух моделей (линейный тренд и тренд параболы 2-ого порядка). Исходная информация приводится в табл. 5.1.

Таблица 5.1

Исходные данные

№ п/п

t

Годы

Объем реализации готовой продукции млн. руб.

1

2000

15,1

2

2001

16

3

2002

17,2

4

2003

17,9

5

2004

17,2

6

2005

19,6

7

2006

18,3

8

2007

18,9

9

2008

18,6

10

2009

19,2

11

2010

19,3

12

2011

18,9

13

2012

17,6

В качестве конкурирующих моделей взять линейный тренд и параболический тренд.

Решение: По условиям задачи в качестве конкурирующих моделей взяты линейный тренд и параболический тренд . В этих выражениях - определяемые параметры трендовых моделей; - текущий номер уровня динамического ряда. Предварительные вычисления приведем в виде табл. 5.2.

Таблица 5.2

Вычисление коэффициентов нормальных уравнений для линейного тренда

Годы

t

t2

t

1999

15,1

1

1

15,1

16,540

2,074

2000

16

2

4

32

16,780

0,608

2001

17,2

3

9

51,6

17,020

0,032

2002

17,9

4

16

71,6

17,260

0,410

2003

17,2

5

25

86

17,500

0,090

2004

19,6

6

36

117,6

17,740

3,460

2005

18,3

7

49

128,1

17,980

0,102

2006

18,9

8

64

151,2

18,220

0,462

2007

18,6

9

81

167,4

18,460

0,020

2008

19,2

10

100

192

18,700

0,250

2009

19,3

11

121

212,3

18,940

0,130

2010

18,9

12

144

226,8

19,180

0,078

2011

17,6

13

169

228,8

19,420

3,312

233,8

91

819

1680,5

11,028

Для нахождения неизвестных параметров моделей необходимо воспользоваться системой нормальных уравнений, представленной в виде формулы:

, (22)

На основании таблицы 4.7 система уравнений (4.9) примет следующий вид:

.

После решения этой системы, были определены числовые значения параметров: . Следовательно, модель тренда примет следующий вид: . На основании этой модели можно получить прогнозное значение объема реализации на 2013 год. Для этого в модель вместо необходимо подставить время упреждения . В результате чего было получено прогнозное значение показателя для первой модели

Для получения параметров параболического тренда предварительные вычисления сведем в таблицу(5.3).

Таблица 5.3

Вычисление коэффициентов нормальных уравнений для параболического тренда

Годы

t

t2

t

1999

15,1

1

1

15,1

15,176

0,006

2000

16

8

16

64

16,098

0,010

2001

17,2

27

81

154,8

16,896

0,092

2002

17,9

64

256

286,4

17,570

0,109

2003

17,2

125

625

430

18,121

0,848

2004

19,6

216

1296

705,6

18,548

1,107

2005

18,3

343

2401

896,7

18,851

0,304

2006

18,9

512

4096

1209,6

19,030

0,017

2007

18,6

729

6561

1506,6

19,086

0,236

2008

19,2

1000

10000

1920

19,018

0,033

2009

19,3

1331

14641

2335,3

18,826

0,225

2010

18,9

1728

20736

2721,6

18,510

0,152

2011

17,6

2197

28561

2974,4

18,070

0,221

233,8

8281

89271

15220,1

3,36

Для нахождения неизвестных параметров моделей необходимо воспользоваться системой нормальных уравнений, представленной в виде формулы:

, (23)

На основании таблицы 5.3 система уравнений (5.7) примет следующий вид:

После решения этой системы, были определены числовые значения параметров: . Тогда модель тренда примет следующий вид: . На основании этой модели можно получить прогнозное значение объема реализации на 2013 год. Для этого в модель вместо необходимо подставить время упреждения . В результате чего было получено прогнозное значение показателя для второй модели составит:

Для повышения точности прогноза следует применить комбинированный прогноз. Для этого по формулам (20) и (21) необходимо найти веса для каждого прогноза. Вес для первого метода прогнозирования будет равняться: , а для второго метода прогнозирования - . Здесь и - дисперсии соответственно для первого и второго методов прогнозирования, которые можно рассчитать по формуле 24:

, (24)

На основании таблиц 5.2, 5.3 необходимо рассчитать дисперсии для каждого метода прогнозирования, которые будут равняться соответственно: , . Следовательно, веса методов прогнозирования будут равны соответственно: и .

Далее по формуле (22) необходимо найти комбинированный прогноз показателя:

Для большей точности прогноза нужно произвести интервальное прогнозирование. Для этого находится интервал прогноза по формуле 25:

, (25)

где l - коэффициент доверия к прогнозу, рассчитываемый на основании таблиц теории вероятностей с доверительной вероятностью (см. приложение В).

В экономических исследованиях в качестве доверительной вероятности, как правило, берут 0,95;

Таким образом, среднеквадратическая ошибка комбинированного прогноза в данном случае будет равняться: . Коэффициент доверия к комбинированному прогнозу, который соответствует доверительной вероятности 0,95, определим по таблице (приложение В) и равняется 1,96. Тогда интервал прогноза будет равен: .

Далее нужно найти границы прогнозируемого показателя по формуле 26:

, (26)

Подставляя данные, выражение (26) примет вид: .

Итак, на основании интервального комбинированного прогнозирования можно сделать вывод о том, что с доверительной вероятностью 0,95, можно утверждать, что объем реализации продукции фирмы в 2012 году будет больше 17,691 млн. руб., но и не меньше 15,865 млн. руб., если не произойдут резкие непредвиденные изменения в экономической среде в целом и на анализируемом рынке в частности.