Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ГНП.docx
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
3.58 Mб
Скачать

Определение номинальной толщины стенки труб и эпюры несущей способности

Номинальная толщина стенки н" каждой секции труб на всем протяжении технологического участка должна определяться на основании эпюры рабочих давлений.

Несущая способность каждой секции должна определяться по формуле:

где Dн наружный диаметр нефтепровода;

н – номинальная толщина стенки;

R1 – расчетное сопротивление (определяется по формуле 6.5);

n - коэффициент надежности по нагрузке - внутреннему рабочему давлению в нефтепроводе, учитывающий возможное увеличение внутреннего давления в переходных процессах и принимаемый по таблице 6.7.

По найденным значениям несущей способности каждой секции должна строиться эпюра несущей способности всего технологического участка.

По фактическому испытательному давлению Рисп в каждой секции трубопровода (определяется по эпюре испытательных давлений) определяется допустимое рабочее давление, как минимум из двух величин: Рисп/kисп и Pδ, где kисп – нормативный коэффициент, используемый при определении испытательного давления по рабочему давлению в данной секции в зависимости от категории участка нефтепровода.

Эпюры рабочих давлений, допустимых рабочих давлений и несущей способности должны быть приведены на сводном графике расчётных давлений на стационарных режимах.

                                                                     

Расстановка перекачивающих станций по трассе нефтепровода

Расстановка перекачивающих станций выполняется графически на сжатом профиле трассы. Метод размещения станций по трассе впервые был предложен В. Г. Шуховым и носит его имя.

Рассмотрим реализацию этого метода для случая округления числа перекачивающих станций в большую сторону на примере одного эксплуатационного участка. В работе находятся три перека­чивающие станции, оборудованные однотипными магист­ральными насосами и создающие одинаковые напоры HСТ1= HСТ1= HСТ1. На ГПС установлены подпорные насосы, создающие подпор hП. В конце трубопровода (эксплуатационного участка) обеспечивается остаточный напор hОСТ (рис. 1.16).

Рис. 1.16. Расстановка перекачивающих станций по трассе нефтепровода постоянного диаметра

По известной производительности нефтепровода определя­ется значение гидравлического уклона i. Строится треугольник гидравлического уклона abc (с учетом надбавки на местные сопротивления) в принятых масштабах сжатого профиля трассы.

Из начальной точки трассы вертикально вверх в масштабе высот строится отрезок AC, равный суммарному активному напору перекачивающих станций AC=hП+n·HСТ.

Вычитая из суммарного активного напора отрезок СС1, равный величине hОСТ, строим через точки С1B1 прямую линию, параллельную гипотенузе гидравлического треугольника abc. Точка C1 должна совпадать с конечной отметкой zК нефтепровода.

Место положения на трассе второй перекачивающей станции определяется с помощью отрезка, проведенного из вершины напора HСТ1 параллельно линии гидравлического уклона до пересечения с профилем. Расположению второй перекачивающей станции будет соответствовать точка M на профиле трассы.

Аналогичными построениями определяется место размещения следующей станции (точка N). Добавляя к напору станций подпор, передаваемый с головной ПС, получим линию распределения напоров по длине нефтепровода.

При округлении числа перекачивающих станций в меньшую сторону рассчитывается длина лупинга (вставки) и гидравлический уклон на участке с лупингом (вставке). Рассмотрим особенности расстановки ПС по трассе нефтепровода в этом случае. Исходные данные для построения примем как в случае, рассмотренном выше.

Дополнительно строится гидравлический треугольник abd. Его гипотенуза bd определяет положение линии гидравлического уклона на участке с лупингом iЛ (рис. 1.17).

Из точек С1 и B1 строится параллелограмм C1F1B1K1, стороны F1B1 и C1K1 которого параллельны линии bd, а стороны C1F1 и B1K1 – параллельны линии bc гидравлических треугольников abc и abd. При этом горизонтальные проекции отрезков C1F1 и B1K1 равны протяженности лупинга в горизонтальном масштабе.

Как видно из рисунка, при размещении всего лупинга в начале нефтепровода, линия падения напора будет изображаться ломаной C1F1B1, а в случае расположения его в конце нефтепровода – ломаной B1K1C1 . По правилу параллелограмма лупинг можно размещать в любом месте трассы, поскольку все варианты гидравлически равнозначны. Лупинг также можно разбивать на части. Однако предпочтительнее размещать лупинг (или его части) в конце трубопровода (перегонов между перекачивающими станциями).

Расстановка перекачивающих станций по трассе в случае прокладки лупинга выполняется в следующем порядке. Из точек C2 и C3 строятся части аналогичных C1F1B1K1 параллелограммов до пересечения с профилем трассы. Таким образом, вторую перекачи­вающую станцию можно разместить в зоне возможного располо­жения B2K2, а третью – в зоне B3K3. Предположим, что исходя из конкретных условий, станции решено расположить в точках X и Y.

Рис. 1.17. Расстановка перекачивающих станций и лупингов по трассе нефтепровода

Проводя из точки X линию, параллельную iЛ, до пересечения с линией C2B2, определяется протяженность лупинга lЛ1. Аналогичные построения выполняются для размещения остальных лупингов и станций. Сумма длин отрезков lЛ1, lЛ2 и lЛ3 должна равняться расчетной длине лупинга lЛ, найденной из выражения (1.43).