
- •Определение объема резервуарных парков в системе магистральных нефтепроводов
- •Состав сооружений и классификация магистральных газопроводов
- •Определение перевальной точки и расчетной длины нефтепровода
- •Определение проектной пропускной способности
- •Расчёт диаметра нефтепровода
- •Нефтепроводы со сбросами и подкачками
- •Нефтепровод со сбросом
- •Нефтепровод с подкачкой
- •Порядок технологического расчета магистрального газопровода
- •Газораспределительные станции
- •Среднее давление в газопроводе
- •Изменение температуры газа по длине газопровода
- •Определение номинальной толщины стенки труб и эпюры несущей способности
- •Расстановка перекачивающих станций по трассе нефтепровода
- •Пропускная способность мг
- •Определение пропускной способности и производительности магистрального газопровода
- •Подводные переходы трубопроводов
- •Определение коэффициента гидравлического сопротивления
- •Система защит по давлению, обеспечивающая безопасную эксплуатацию нефтепровода
- •Переходы нефтепроводов через естественные и искусственные препятствия
- •Очистка внутренней полости и испытание магистральных нефтепроводов на прочность и герметичность
- •Определение средней температуры Тср
- •Пренебрегая влиянием дросселирования газа, получим уравнение Шухова
- •Расчет на прочность и устойчивость трубопровода определение толщины стенки трубопровода
- •Проверка на прочность подземного трубопровода в продольном направлении
- •Проверка на предотвращение недопустимых пластических деформаций
- •Проверка обшей устойчивости трубопровода в продольном направлении
- •Расчетные характеристики уплотненных влажных грунтов Средней полосы России
- •Коэффициент постели грунта при сжатии
- •Основные характеристики импортных изоляционных лент, липких оберток и клеевых грунтовок
- •Особенности строительства трубопроводов в условиях болот. Закрепление нефтепроводов на болотах.
- •Расчет сложных газопроводов
- •Соединительные детали трубопроводов
- •Механизм смесеобразования при последовательной перекачке нефтей.
- •5 Ремонт резервуаров Основания и фундаменты под резервуары
- •Ремонт оснований и фундаментов
- •Контроль качества ремонтных работ
- •Планировка резервуарного парка
- •Условия разбивки резервуарного парка в группы и определение размеров групп в плане
- •Оборудование насосных и тепловых станций.
- •Нагрузки и воздействия на магистральном газопроводе
- •1. Собственный вес трубопровода, учитываемый в расчетах как вес единицы длины трубопровода
- •Эксплуатация резервуаров Критерии эксплуатационной надёжности
- •Обслуживание резервуаров
- •Обслуживание технологических трубопроводов резервуарных парков
- •Обследование металлических резервуаров
- •Конструктивные требования к нефтепроводам
- •Основания и фундаменты под резервуары
- •Методы сокращения потерь
- •2) Чем меньше коэффициент оборачиваемости при данном избыточном давлении, тем больше срок окупаемости;
- •3) Наиболее эффективны резервуары повышенного давления в южной полосе России, так как с повышением температуры окружающего воздуха резко сокращается срок окупаемости капитальных затрат.
- •Расстановка насосных станций
- •.Надземные трубопроводы
- •Порядок проектирования нефтепроводов.
- •Защита трубопроводов от коррозии Классификация коррозионных разрушений
- •Основные способы защиты трубопроводов от коррозии
- •Трубы и соединительные детали
- •Испытание нефтепроводов
- •Последовательность и виды работ при капитальном ремонте магистральных трубопроводов
- •Выборочный ремонт. Технологические операции при выполнении выборочного ремонта производятся в следующей последовательности:
- •Классификация резервуаров
- •Оценка состояния внутренней полости
- •Оборудование резервуаров
- •Оборудование резервуаров
- •Дыхательные клапаны
- •Принцип действия дыхательного клапана типа кдс
- •Расчет пропускной способности дыхательных клапанов
- •Техническая характеристика дыхательных клапанов
- •Оборудование для подогрева нефти и нефтепродуктов в резервуарах
- •Конструкции подогревателей
- •Огнепреградители
- •Сифонный кран
- •Вентиляционный патрубок
- •Хлопуша
- •Приемораздаточное устройство
- •Люки замерные
- •Источники потерь от испарения
- •. Изменение температуры газа по длине газопровода
- •Очистка трубопровода от отложений
Конструкции подогревателей
По конструкции подогреватели в зависимости от назначения делятся на подогреватели при сливе нефтепродуктов из ёмкостей, подогреватели при хранении в резервуарах и подогреватели трубопроводов.
Подогреватели при сливе нефтепродуктов различаются по способу подогрева и типу транспортной емкости.
Для подогрева в железнодорожных цистернах применяют следующие подогреватели:
1) подогреватели острым паром. По конструкции они представляют собой перфорированные трубчатые шланги, помещенные в толщу жидкости, пар поступает через отверстия в шлангах. Используются только для разогрева мазута, допускающего частичное обводнение;
2) подогреватели глухим паром. Подразделяются на переносные и стационарные. Переносные помещают в цистерну только на время разогрева, а по окончании их извлекают. Стационарные находятся внутри цистерны постоянно (рис. 5.2). Подогреватели изготавливают из дюралюминиевых труб; состоят из трех секций, помещаемых в цистерну поочередно.
Паровой подогреватель состоит из трех секций змеевиков – центральной 1 и двух боковых 2. В цистерну опускается вначале центральная секция, а затем заводятся боковые секции.
Рис. 5.2. Паровой змеевиковый подогреватель
Электрический подогрев применяют для снижения вязкости темных нефтепродуктов (мазута, масел). Общая мощность электронагревателей достигает 50 – 70 кВт.
Таблица 5.6
Типы нагревателей
Тип |
ПЭ-1 |
ПЭ-2 |
ПЭ-3 |
ПЭ-4 |
ПЭ-5 |
ПЭ-6 |
Поверхность нагрева, м2 |
1,7 |
2,06 |
2,42 |
3,14 |
3,86 |
4,58 |
Наряду с общим подогревом всего нефтепродукта применяют и так называемый местный подогрев. Местные подогреватели следует располагать поблизости от приемных и раздаточных устройств.
Рис. 5.3. Компоновка секционных подогревателей в резервуаре объёмом 5000 м3
При циркуляционном методе подогрева нефтепродукт собирается из нижней части резервуара и насосом прокачивается через внешний подогреватель-теплообменник. В этом случае внутри резервуара устанавливаются кольцевой подающий трубопровод и местный подогреватель у заборной трубы. Теплообменники располагают индивидуально у каждого резервуара.
В качестве электрических подогревателей применяют гибкие нагревательные элементы в виде отдельных блоков. Они представляют собой эластичную ленту, состоящую из медных и нихромовых проволок, сплетенных стеклонитью (рис. 5.4). Для придания влагостойкости ленту покрывают кремнеорганической резиной, которая служит также защитной электроизоляционной оболочкой. Ленту закрепляют на трубопроводе и покрывают снаружи слоем тепловой изоляции. Длина ленты зависит от количества последовательно соединенных блоков. Лента снабжена штепсельным разъемом для быстрого подключения к сети.
Рис. 5.4. Электронагревательная гибкая лента ЭНГЛ-180: 1 – штепсельный разъем; 2 – концевая заделка; 3 – герметизирующая оболочка из кремнеорганической резины; 4 – стекловолоконная основа; 5 – нагревательные нихромовые жилы; 6 – токоведущие провода
На рис. 5.5 показана схема подогрева стального резервуара при помощи гибких нагревательных элементов [18]. Данная схема применяется в основном для поддержания постоянной температуры нефтепродукта при снижении температуры окружающей среды.
Рис. 5.5. Устройство для электроподогрева стальных резервуаров: 1 – корпус резервуара; 2 – гибкий ленточный подогреватель; 3 – стальной уголок с изоляцией; 4 – контактные пластины; 5 – трансформатор
При расчете подогревателей определяют поверхность теплообмена, расход теплоносителя и конструктивные размеры подогревателей. Для этого необходимо знать начальную и конечную температуру подогрева нефтепродукта, его массу или расход.