
- •Определение объема резервуарных парков в системе магистральных нефтепроводов
- •Состав сооружений и классификация магистральных газопроводов
- •Определение перевальной точки и расчетной длины нефтепровода
- •Определение проектной пропускной способности
- •Расчёт диаметра нефтепровода
- •Нефтепроводы со сбросами и подкачками
- •Нефтепровод со сбросом
- •Нефтепровод с подкачкой
- •Порядок технологического расчета магистрального газопровода
- •Газораспределительные станции
- •Среднее давление в газопроводе
- •Изменение температуры газа по длине газопровода
- •Определение номинальной толщины стенки труб и эпюры несущей способности
- •Расстановка перекачивающих станций по трассе нефтепровода
- •Пропускная способность мг
- •Определение пропускной способности и производительности магистрального газопровода
- •Подводные переходы трубопроводов
- •Определение коэффициента гидравлического сопротивления
- •Система защит по давлению, обеспечивающая безопасную эксплуатацию нефтепровода
- •Переходы нефтепроводов через естественные и искусственные препятствия
- •Очистка внутренней полости и испытание магистральных нефтепроводов на прочность и герметичность
- •Определение средней температуры Тср
- •Пренебрегая влиянием дросселирования газа, получим уравнение Шухова
- •Расчет на прочность и устойчивость трубопровода определение толщины стенки трубопровода
- •Проверка на прочность подземного трубопровода в продольном направлении
- •Проверка на предотвращение недопустимых пластических деформаций
- •Проверка обшей устойчивости трубопровода в продольном направлении
- •Расчетные характеристики уплотненных влажных грунтов Средней полосы России
- •Коэффициент постели грунта при сжатии
- •Основные характеристики импортных изоляционных лент, липких оберток и клеевых грунтовок
- •Особенности строительства трубопроводов в условиях болот. Закрепление нефтепроводов на болотах.
- •Расчет сложных газопроводов
- •Соединительные детали трубопроводов
- •Механизм смесеобразования при последовательной перекачке нефтей.
- •5 Ремонт резервуаров Основания и фундаменты под резервуары
- •Ремонт оснований и фундаментов
- •Контроль качества ремонтных работ
- •Планировка резервуарного парка
- •Условия разбивки резервуарного парка в группы и определение размеров групп в плане
- •Оборудование насосных и тепловых станций.
- •Нагрузки и воздействия на магистральном газопроводе
- •1. Собственный вес трубопровода, учитываемый в расчетах как вес единицы длины трубопровода
- •Эксплуатация резервуаров Критерии эксплуатационной надёжности
- •Обслуживание резервуаров
- •Обслуживание технологических трубопроводов резервуарных парков
- •Обследование металлических резервуаров
- •Конструктивные требования к нефтепроводам
- •Основания и фундаменты под резервуары
- •Методы сокращения потерь
- •2) Чем меньше коэффициент оборачиваемости при данном избыточном давлении, тем больше срок окупаемости;
- •3) Наиболее эффективны резервуары повышенного давления в южной полосе России, так как с повышением температуры окружающего воздуха резко сокращается срок окупаемости капитальных затрат.
- •Расстановка насосных станций
- •.Надземные трубопроводы
- •Порядок проектирования нефтепроводов.
- •Защита трубопроводов от коррозии Классификация коррозионных разрушений
- •Основные способы защиты трубопроводов от коррозии
- •Трубы и соединительные детали
- •Испытание нефтепроводов
- •Последовательность и виды работ при капитальном ремонте магистральных трубопроводов
- •Выборочный ремонт. Технологические операции при выполнении выборочного ремонта производятся в следующей последовательности:
- •Классификация резервуаров
- •Оценка состояния внутренней полости
- •Оборудование резервуаров
- •Оборудование резервуаров
- •Дыхательные клапаны
- •Принцип действия дыхательного клапана типа кдс
- •Расчет пропускной способности дыхательных клапанов
- •Техническая характеристика дыхательных клапанов
- •Оборудование для подогрева нефти и нефтепродуктов в резервуарах
- •Конструкции подогревателей
- •Огнепреградители
- •Сифонный кран
- •Вентиляционный патрубок
- •Хлопуша
- •Приемораздаточное устройство
- •Люки замерные
- •Источники потерь от испарения
- •. Изменение температуры газа по длине газопровода
- •Очистка трубопровода от отложений
Принцип действия дыхательного клапана типа кдс
Штампосварной корпус клапана КДС-1500 выполнен в виде четырехугольного бункера, на боковых поверхностях которого выкатаны седла для вакуумных затворов. Затвор вакуума состоит из тарелки вакуума, прикрывающей седло вакуума в корпусе, и кронштейна с фторопластовым хлястиком, которые крепятся к корпусу и ограничивают смещение тарелки относительно седла.
Герметичное соединение «затвор – седло» предотвращает поступление воздуха в резервуар. Горловина клапана КДС-1500 заканчивается седлом, на котором устанавливается тарелка давления, а на верхней части корпуса КДС-1500 раскатаны два седла давления, предназначенные для выхода паровоздушной смеси из резервуара. Контактирующие поверхности тарелок и седел покрыты фторопластовой пленкой, препятствующей примерзанию сопрягающихся поверхностей. Клапаны КДС-1500 устанавливаются на резервуар крепежным фланцем или переходником. На крепежный фланец (переходник) устанавливается кассета огневого предохранителя.
Для защиты от прямого воздействия атмосферных осадков и ветра клапан КДС-1500 имеет крышку и четыре воздуховода для вакуумных затворов. При «вдохе» резервуара в полости создается вакуум, равный вакууму в газовом пространстве резервуара. При достижении расчетного значения вакуума (вакуума срабатывания) в полости клапана КДС-1500 тарелки вакуумных затворов открываются, сообщая газовое пространство резервуара с атмосферой, обеспечивая пропуск воздуха в резервуар.
При снижении вакуума ниже расчетного значения затвор закрывается и резервуар герметизируется. При «выдохе» резервуара в полости корпуса клапана КДС возникает избыточное давление, равное давлению в газовом пространстве резервуара. Это давление прижимает тарелки вакуумных затворов к седлам и действует на тарелку затвора давления, стремясь поднять ее. При превышении избыточного давления в корпусе клапана КДС-1500 величины давления срабатывания, тарелка давления открывается и происходит выпуск газа из резервуара в атмосферу. После снижения избыточного давления ниже расчетного значения тарелка возвращается в исходное положение (затвор закрывается).
Расчет пропускной способности дыхательных клапанов
Максимальный расход газов через дыхательный клапан в процессе «выдоха» находят из выражения
(5.1)
где
–
наибольшее поступление жидкости в
резервуар, м3/ч;
– увеличение
объема газа в резервуаре за счет нагрева
поверхности резервуара, м3/ч;
– увеличение
объема газа в резервуаре при поступлении
более теплого нефтепродукта, м3/ч;
(5.2)
где
– коэффициент объемного расширения
газа;
– скорость
нагрева газового пространства (принимается
равной
0,0013 К/с);
–
максимальный
объем газового пространства (принимается
равным объему резервуара), м3;
,
(5.3)
где Е
–
опытный коэффициент, зависящий от
разности температур
(
Т)
закачиваемого
нефтепродукта и газового пространства
резервуара (табл. 5.2);
D – диаметр резервуара, м.
Таблица 5.2
ΔТ |
5 |
10 |
15 |
20 |
30 |
40 |
50 |
Е, м/ч |
0,074 |
0,089 |
0,31 |
0,47 |
0,81 |
1,18 |
1,62 |
При работе резервуара на вакуум расход поступающего через клапан воздуха при «вдохе»
(5.4)
где
– расход жидкости из резервуара, м3/ч;
– уменьшение
объема газа в связи с охлаждением, м3/ч.
(5.5)
где
– скорость охлаждения газового
пространства (при дожде и ливне принимается
равной 8∙10-3
К/с).
Для упрощения расчетов дыхательных клапанов можно использовать следующие формулы [18]. Суммарная пропускная способность для дыхательного клапана в процессе «выдоха» определяется выражением
,
(5.6)
где
– расход закачиваемого нефтепродукта,
м3/
ч;
час-1
– поправка на изменение объема паров
нефтепродукта в резервуаре от повышения
температуры окружающего воздуха;
VР – геометрический объем резервуара, м3.
При откачке нефтепродукта из резервуара или снижении температуры окружающего воздуха давление в резервуаре становится меньше атмосферного и резервуар сжимается. Для устранения этого отрицательного явления в дыхательных клапанах устанавливают клапан, который открывается при разрежении, например, 200 Па. Это явление называют «вдохом». При возникновении разрежения в резервуаре клапан открывается и должен обеспечить поступление необходимого атмосферного воздуха, м3/ч.
Суммарную пропускную способность клапана вакуумметрического давления находят из выражения
(5.7)
где QОТ – расход откачиваемого нефтепродукта, м3/ч;
k2 = 0, 22 час-1 – поправка на изменение объема паров нефтепродукта в резервуаре от понижения температуры окружающего воздуха.
Окончательный расчет дыхательного клапана завершается определением его проходного сечения F по формуле
,
(5.8)
где
– допустимая скорость паров нефтепродукта
или воздуха при «выдохе» или «вдохе»
резервуара (1–2 м/с).
Определив площадь проходного сечения, находим его характерный диаметр из выражения
.
(5.9)
В табл. 5.3 приведены характеристики дыхательных клапанов, применяемых в резервуарах. Давление открытия прямого дыхательного клапана, работающего на «выдох», составляет, например, 2000 Па, обратного, работающего на «вдох», – 200 Па [53].
Основной характеристикой дыхательного клапана является внутренний диаметр, определяющий его проходное сечение, необходимое для прохождения заданного количества паров нефтепродукта при рабочих параметрах эксплуатации (давление, температура, скорость).
Таблица 5.3