
- •Определение объема резервуарных парков в системе магистральных нефтепроводов
- •Состав сооружений и классификация магистральных газопроводов
- •Определение перевальной точки и расчетной длины нефтепровода
- •Определение проектной пропускной способности
- •Расчёт диаметра нефтепровода
- •Нефтепроводы со сбросами и подкачками
- •Нефтепровод со сбросом
- •Нефтепровод с подкачкой
- •Порядок технологического расчета магистрального газопровода
- •Газораспределительные станции
- •Среднее давление в газопроводе
- •Изменение температуры газа по длине газопровода
- •Определение номинальной толщины стенки труб и эпюры несущей способности
- •Расстановка перекачивающих станций по трассе нефтепровода
- •Пропускная способность мг
- •Определение пропускной способности и производительности магистрального газопровода
- •Подводные переходы трубопроводов
- •Определение коэффициента гидравлического сопротивления
- •Система защит по давлению, обеспечивающая безопасную эксплуатацию нефтепровода
- •Переходы нефтепроводов через естественные и искусственные препятствия
- •Очистка внутренней полости и испытание магистральных нефтепроводов на прочность и герметичность
- •Определение средней температуры Тср
- •Пренебрегая влиянием дросселирования газа, получим уравнение Шухова
- •Расчет на прочность и устойчивость трубопровода определение толщины стенки трубопровода
- •Проверка на прочность подземного трубопровода в продольном направлении
- •Проверка на предотвращение недопустимых пластических деформаций
- •Проверка обшей устойчивости трубопровода в продольном направлении
- •Расчетные характеристики уплотненных влажных грунтов Средней полосы России
- •Коэффициент постели грунта при сжатии
- •Основные характеристики импортных изоляционных лент, липких оберток и клеевых грунтовок
- •Особенности строительства трубопроводов в условиях болот. Закрепление нефтепроводов на болотах.
- •Расчет сложных газопроводов
- •Соединительные детали трубопроводов
- •Механизм смесеобразования при последовательной перекачке нефтей.
- •5 Ремонт резервуаров Основания и фундаменты под резервуары
- •Ремонт оснований и фундаментов
- •Контроль качества ремонтных работ
- •Планировка резервуарного парка
- •Условия разбивки резервуарного парка в группы и определение размеров групп в плане
- •Оборудование насосных и тепловых станций.
- •Нагрузки и воздействия на магистральном газопроводе
- •1. Собственный вес трубопровода, учитываемый в расчетах как вес единицы длины трубопровода
- •Эксплуатация резервуаров Критерии эксплуатационной надёжности
- •Обслуживание резервуаров
- •Обслуживание технологических трубопроводов резервуарных парков
- •Обследование металлических резервуаров
- •Конструктивные требования к нефтепроводам
- •Основания и фундаменты под резервуары
- •Методы сокращения потерь
- •2) Чем меньше коэффициент оборачиваемости при данном избыточном давлении, тем больше срок окупаемости;
- •3) Наиболее эффективны резервуары повышенного давления в южной полосе России, так как с повышением температуры окружающего воздуха резко сокращается срок окупаемости капитальных затрат.
- •Расстановка насосных станций
- •.Надземные трубопроводы
- •Порядок проектирования нефтепроводов.
- •Защита трубопроводов от коррозии Классификация коррозионных разрушений
- •Основные способы защиты трубопроводов от коррозии
- •Трубы и соединительные детали
- •Испытание нефтепроводов
- •Последовательность и виды работ при капитальном ремонте магистральных трубопроводов
- •Выборочный ремонт. Технологические операции при выполнении выборочного ремонта производятся в следующей последовательности:
- •Классификация резервуаров
- •Оценка состояния внутренней полости
- •Оборудование резервуаров
- •Оборудование резервуаров
- •Дыхательные клапаны
- •Принцип действия дыхательного клапана типа кдс
- •Расчет пропускной способности дыхательных клапанов
- •Техническая характеристика дыхательных клапанов
- •Оборудование для подогрева нефти и нефтепродуктов в резервуарах
- •Конструкции подогревателей
- •Огнепреградители
- •Сифонный кран
- •Вентиляционный патрубок
- •Хлопуша
- •Приемораздаточное устройство
- •Люки замерные
- •Источники потерь от испарения
- •. Изменение температуры газа по длине газопровода
- •Очистка трубопровода от отложений
Расчет сложных газопроводов
Реальные МГ всегда являются сложными трубопроводами, т.е. отдельные участки его отличаются друг от друга внутренними диаметрами или количеством параллельных ниток. Такие трубопроводы можно рассчитывать последовательно по участкам или целиком, заменяя расчет сложного трубопровода расчетом простого. Второй подход является менее трудоемким и более используемым.
Переход к расчету простого трубопровода производится использованием понятий эквивалентного диаметра или коэффициента расхода.
Эквивалентным диаметром называется диаметр простого газопровода имеющего пропускную способность равную пропускной способности реального трубопровода при прочих равных условиях.
Коэффициентом расхода называют отношение пропускной способности реального трубопровода к пропускной способности эталонного трубопровода с произвольно выбранным эталонным диаметром при прочих равных условиях
кр = q / q0 . (4.37)
Для случая простого трубопровода
, (4.38)
где
Di и
– диаметр и коэффициент гидравлического
сопротивления простого трубопровода;
D0 и
– диаметр и коэффициент гидравлического
сопротивления эталонного трубопровода.
При квадратичном режиме течения газа
крi=(Di/D0)2,6 . (4.39)
При параллельном соединении простых трубопроводов
. (4.40)
. (4.41)
При последовательном соединении трубопроводов
, (4.42)
. (4.43)
В общем случае сложного газопровода коэффициент расхода kр или эквивалентный диаметр DЭ определяются последовательным использованием формул (4.40) и (4.42) или (4.41) и (4.43).
Соединительные детали трубопроводов
Расчетную толщину стенки деталей (тройников, отводов, переходников и днищ) д, см, трубопроводов при действии внутреннего давления следует определять по формуле
.
(59)
Толщина стенки основной трубы тройника м, см, определяется по формуле (59), а толщина стенки ответвления о, см, — по формуле
.
(60)
Толщина стенки после расточки концов соединительных деталей под сварку с трубопроводом (толщина свариваемой кромки) к.д, см, определяется из условия
,
(61)
где n |
— |
обозначение то же, что в формуле (12); |
р |
— |
обозначение то же, что в формуле (7); |
Dд |
— |
наружный диаметр соединительной детали, см; |
в |
— |
коэффициент несущей способности деталей следует принимать: |
|
|
для штампованных отводов и сварных отводов, состоящих не менее, чем из трех полных секторов и двух полусекторов по концам при условии подварки корня шва и 100%-ного контроля сварных соединений — по табл. 18; |
|
|
для тройников — по графику рекомендуемого приложения; для конических переходников с углом наклона образующей <12° и выпуклых днищ —в =1; |
R1 (д) |
— |
расчетное сопротивление материала детали (для тройников R1(д) =R1(м)), МПа; |
R1(о), R1(м) |
— |
расчетные сопротивления материала ответвления и магистрали тройника, МПа; |
Dо |
— |
наружный диаметр ответвления тройника, см; |
Dм |
— |
наружный диаметр основной трубы тройника, см. |
Примечание. Толщину стенки переходников следует рассчитывать по большему диаметру.
Таблица 18
Отношение среднего радиуса изгиба отвода к его наружному диаметру |
1,0 |
1,5 |
2,0 |
Коэффициент несущей способности детали в |
1,30 |
1,15 |
1,00 |
В том случае, когда кроме внутреннего давления тройниковые соединения могут подвергаться одновременному воздействию изгиба и продольных сил, для предотвращения недопустимых деформаций должно выполняться условие
,
(62)*
где 1, 2, кр |
— |
напряжения соответственно кольцевое, продольное и касательное в наиболее напряженной точке тройникового соединения, определяемые от нормативных нагрузок и воздействий; |
|
— |
обозначение то же, что в формуле (5). |