Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
15-22.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
60.77 Кб
Скачать

21. Устройства индикации: Семисегментные индикаторы

Выходной логический буфер с тремя состояниями может формировать на выходе напряжение высокого уровня, которое соответствует логической 1, напряжение низкого уровня, которое соответствует логическому 0, и может находиться в так называемом третьем состоянии или иначе «Z» состоянии, которое характеризуется очень высоким выходным сопротивлением (рис. 5.8.). Это сопротивление столь велико, что можно считать, что внутренние цепи логического элемента отсоединены от соответствующего вывода корпуса этого элемента. Это свойство буферов с тремя состояниями позволяет подсоединять к одному электрическому проводнику печатной платы сразу несколько выводов ИС.

Такое решение используется при подключении к магистралям микропроцессорной системы различных ИС внешней памяти. В каждый момент времени МК ведет обмен только с одной ИС памяти. Он активизирует работу этой ИС установкой в 0 сигнала выбора кристалла . Все остальные ИС памяти в этот момент времени находятся в неактивном состоянии, буферы их линий данных пребывают в «Z» состоянии с высоким выходным сопротивлением. Таким образом, эти ИС в данный момент времени как бы отсоединены от линий магистрали данных и не мешают обмену данными МК с единственной активизированной ИС памяти. В другой момент времени положение дел изменится. В активное состояние будет переведена другая схема памяти, в то время как выходные буферы первой ИС будут переведены в «Z» состояние, и эта ИС как бы выключится из работы. Но при этом не следует забывать, что все неактивизированные ИС памяти находятся под питанием и надежно хранят ранее записанную в них информацию.

Рис. 5.9. Функциональная схема 8 индикаторов для выходов с тремя состояниями

Вернемся к рассмотрению схемы индикации. Она представлена на рис. 5.9. Индикатор каждого разряда состоит из двух светодиодов: зеленого и красного. Если на выходе порта PORTx[i] формируется высокий логический уровень сигнала, то благодаря усилителю с большим коэффициентом усиления, который выполнен на операционном усилителе LM324, открывается транзистор 2N2907. Для зеленого светодиода создается прямое смещение напряжения и путь для протекания тока. В результате, зеленый светодиод светится и информирует пользователя о наличии высокого логического уровня на соответствующем выходе. Если на выходе порта PORTx[i] формируется низкий логический уровень сигнала, то открывается транзистор 2N2222, и светится красный светодиод. Если же выход порта PORTx[i] установлен в третье состояние, то пути для протекания токов светодиодов нет, они оба погашены.

22. Аппаратная защита от механического дребезга контактов

На рис. 5.10 представлена схема, которая осуществляет защиту от дребезга механических переключателей [Horowitz и Hill, 1989]. Основным элементом этой схемы является триггер Шмитта (74HC14).Триггер Шмита отличается от других логических элементов, во-первых, тем, что на его входы можно подавать аналоговые сигналы. И если для обычного логического элемента время изменения входного сигнала из состояния 0 в состояние 1 должно составлять всего несколько наносекунд, то для триггера Шмитта это время может быть любым, в том числе несколько десятков или сотен миллисекунд, которые потребуются нам для устранения дребезга контактов. Во-вторых, передаточная характеристика триггера Шмитта обладает гистерезисом: уровень входного напряжения, при котором выход триггера переключается из 0 в 1, превышает уровень напряжения переключения из 1 в 0 примерно на 0,5…0,8 В. Эффект гистерезиса позволяет подавить звон входного сигнала. Незначительные по амплитуде высокочастотные колебания, наложенные на монотонно изменяющуюся постоянную составляющую входного сигнала, не будут приводить к многократному изменению выходного сигнала, поскольку абсолютная величина входного сигнала окажется внутри петли гистерезиса. Рассмотрим работу схемы подавления дребезга контактов переключателя. При разомкнутых контактах напряжение конденсатора равно VCC, на выходе триггера Шмита формируется низкий логический уровень, поскольку все триггеры Шмитта в интегральном исполнении инвертируют входной сигнал. Если клавишу только что нажали, то конденсатор начинает разряжаться через резистор и замкнутые контакты переключателя. Время его разряда определяется постоянной времени RC. Для приведенных на рис. 5.10,a номиналов постоянная времени равна 47 мс. Напряжение на конденсаторе будет убывать немонотонно, поскольку на интервале дребезга контакты то замкнутся, то разомкнутся. В соответствии с их положением конденсатор то разряжается, то заряжается. Но большая постоянная времени цепей разряда и заряда не позволяет напряжению на конденсаторе измениться во время дребезга столь сильно, чтобы произошло переключение триггера Шмитта. И лишь когда дребезг закончится и произойдет длительное замыкание контактов переключателя, конденсатор разрядится до нуля, и на выходе триггера Шмитта установится высокий логический уровень. При размыкании контактов переключателя процесс будет происходить в обратном порядке. Эффект подавления дребезга в рассмотренной схеме будет наблюдаться только тогда, когда постоянная времени цепей разряда и заряда конденсатора будет сравнима с длительностью самого эффекта механического дребезга. Для маломощных переключателей его длительность измеряется единицами и десятками мс, поэтому в нашем примере номиналы резисторов и конденсатора выбраны правильно.

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]